

НА ПУТИ К ЕГЭ-2025:СТАТИКА И ОПТИКА

Стрыгин Сергей Евгеньевич

член Федеральной комиссии по разработке КИМ ЕГЭ по физике(ФИПИ),

Председатель региональной предметной комиссии ЕГЭ по физике в г. Москва (проверка работ и апелляции),

доцент Физического факультета МГУ им. М.В. Ломоносова, кандидат физико-математических наук, Учитель высшей квалификационной категории

27 июня 2024г.

XII Всероссийская летняя школа учителей физики в пансионате МГУ «Красновидово»

СТРУКТУРА КИМ ЕГЭ-2025 ПО ФИЗИКЕ

20 заданий в части 1

6 заданий в части 2

Максимальный балл

3 ч. 55 мин Время выполнения работы

СТРУКТУРА КИМ ЕГЭ-2025 ПО ФИЗИКЕ

ЧАСТЬ 2

6 заданий

с развернутым ответом:

2 задачи по механике

2 задачи по молекулярной физике

2 задачи по электродинамике

№21 3 балла

№22 2 балла

№23 2 балла

№24 3 балла

№25 3 балла

№26 4 балла

качественная задача (механика + молекулярная физика + электродинамика)

расчетная задача (механика + молекулярная физика)

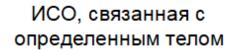
расчетная задача (молекулярная физика + оптика)

расчетная задача (молекулярная физика)

расчетная задача (электростатика, постоянный ток, магнитное поле, ЭМИ)

расчетная задача (механика: динамика, законы сохранения в механике, статика)

Задача №26, механика на 4 балла расчетная задача + физическая модель


Двухкритериальная система оценивания <u>Критерий 1:</u>

Верно обоснована возможность использования законов (закономерностей)

Критерий 2: Традиционные требования 3 балла Исходные формулы и законы (кодификатор); Обозначения физических величин; Рисунок с указанием сил; Математические преобразования и расчеты; Правильный числовой ответ, размерность.

Итого 4 балла

Статика

Твердое тело

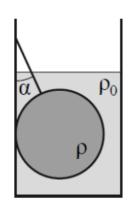
Условия равновесия

Векторная сумма сил, действующих на тело, равна нулю (2 закон Ньютона)

$$\overrightarrow{F}_1 + \overrightarrow{F}_2 + \overrightarrow{F}_3 + \dots = 0$$

Сумма моментов сил равна нулю:

$$M_1 + M_2 + \cdots = 0$$


(моменты сил надо суммировать с учетом знаков моментов сил: M>0, если вращение под действием этой силы по часовой стрелке)

Для идеального блока (если он есть)

Для твердого тела

Железный шар массой 2 кг подвешен на нити и полностью погружён в керосин (см. рисунок). Нить образует с вертикалью угол $\alpha = 30^{\circ}$. Определите силу, с которой шар действует на стенку. Трением шара о стенку пренебречь. Сделайте схематичный рисунок с указанием сил, действующих на шар. Обоснуйте применимость законов, используемых для решения задачи.

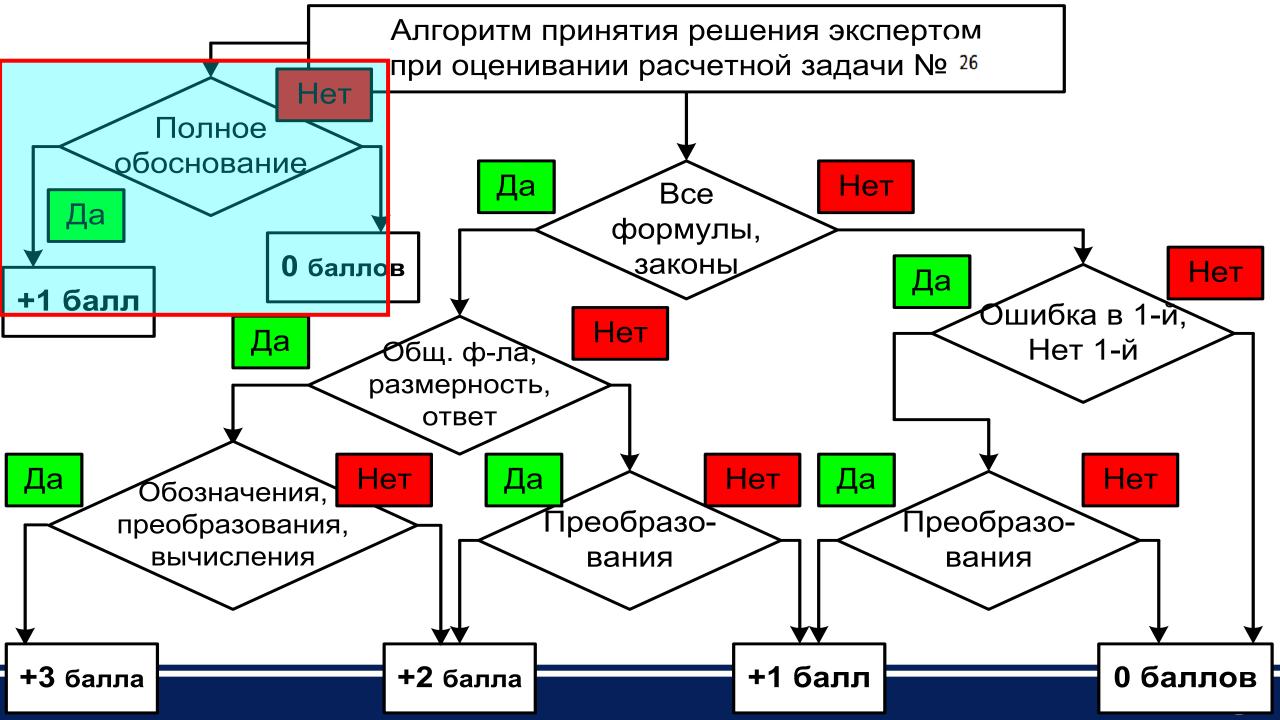
Выбор ИСО

Абсолютно твердое тело

Применимость условий равновесия

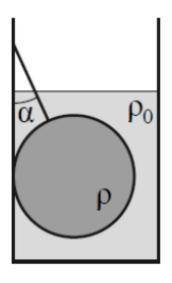
Обоснование

- 1. Рассмотрим задачу в системе отсчёта, связанной с Землёй. Будем считать эту систему отсчёта инерциальной (ИСО).
- 2. Описываем шар моделью твёрдого тела (форма и размеры тела неизменны, расстояние между любыми двумя точками тела остаётся неизменным).
- 3. Любое движение твёрдого тела является суперпозицией поступательного и вращательного движения. Поэтому условий равновесия твёрдого тела в ИСО ровно два: одно для поступательного движения, другое для вращательного движения.
- 4. Сумма приложенных к шару внешних сил равна нулю (условие равновесия твёрдого тела относительно поступательного движения).
- 5. Сумма моментов приложенных к шару внешних сил равна нулю (условие равновесия твёрдого тела относительно вращения). Моменты сил $m\vec{g}$ и \vec{F}_A относительно оси, проходящей через центр шара, равны нулю. Поскольку трение шара о стенку отсутствует, линия действия силы реакции стенки будет проходить через центр шара. Следовательно, исходя из условия равновесия, линия действия силы T, совпадающая с нитью, тоже проходит через центр шара.
- 6. Согласно третьему закону Ньютона силы, с которыми шар и стенка взаимодействуют друг с другом, равны по модулю и направлены в противоположные стороны.


Обобщенная схема оценивания задания 26

	_
Правильно записаны все необходимые положения теории,	2
физические законы, закономерности, и проведены необходимые	
преобразования. Но имеются один или несколько из следующих	
недостатков.	
Записи, соответствующие пунктам II и III, представлены не в	2.1
полном объёме или отсутствуют.	
И (ИЛИ)	
В решении имеются лишние записи, не входящие в решение,	2.2
которые не отделены от решения и не зачёркнуты.	
И (ИЛИ)	
В необходимых математических преобразованиях или вычислениях	0.0
допущены ошибки, и (или) в математических преобразованиях/	2.3
вычислениях пропущены логически важные шаги.	
И (ИЛИ)	
Отсутствует пункт IV, или в нём допущена ошибка (в том числе в	2.4
записи единиц измерения величины)	

Обобщенная схема оценивания задания 26


Представлены записи, соответствующие <u>одному</u> из следующих	1
случаев.	
Представлены только положения и формулы, выражающие	
, -	
	1.1
для решения данной задачи, без каких-либо преобразований с их	
использованием, направленных на решение задачи.	
или	
В решении отсутствует ОДНА из исходных формул, необходимая	
для решения данной задачи (или утверждение, лежащее в основе	1.2
решения), но присутствуют логически верные преобразования с	
имеющимися формулами, направленные на решение задачи.	
или	
В ОДНОЙ из исходных формул, необходимых для решения данной	
задачи (или в утверждении, лежащем в основе решения), допущена	1.3
ошибка, но присутствуют логически верные преобразования с	
имеющимися формулами, направленные на решение задачи	
Все случаи решения, которые не соответствуют вышеуказанным	O
критериям выставления оценок в 1, 2, 3 балла	

ЗАДАЧА 26 Пример-1

Железный шар массой 2 кг подвешен на нити и полностью погружён в керосин (см. рисунок). Нить образует с вертикалью угол $\alpha = 30^{\circ}$. Определите силу, с которой шар действует на стенку. Трением шара о стенку пренебречь. Сделайте схематичный рисунок с указанием сил, действующих на шар. Обоснуйте применимость законов, используемых для решения задачи.

Решение

Запишем второй закон Ньютона: $\vec{T} + m\vec{g} + \vec{N} + \vec{F}_{_A} = 0$.

В проекциях на оси Ox и Oy второй закон Ньютона запишем в виде:

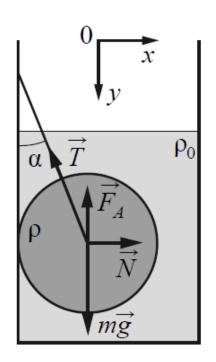
$$Ox: N - T\sin\alpha = 0; \tag{1}$$

$$Oy: mg - T\cos\alpha - F_A = 0. \quad (2)$$

Объём шара $V = \frac{m}{\rho}$.

Величина выталкивающей силы F_A определяется по закону Архимеда:

$$F_A = \rho_0 g V = \frac{mg\rho_0}{\rho},\tag{3}$$

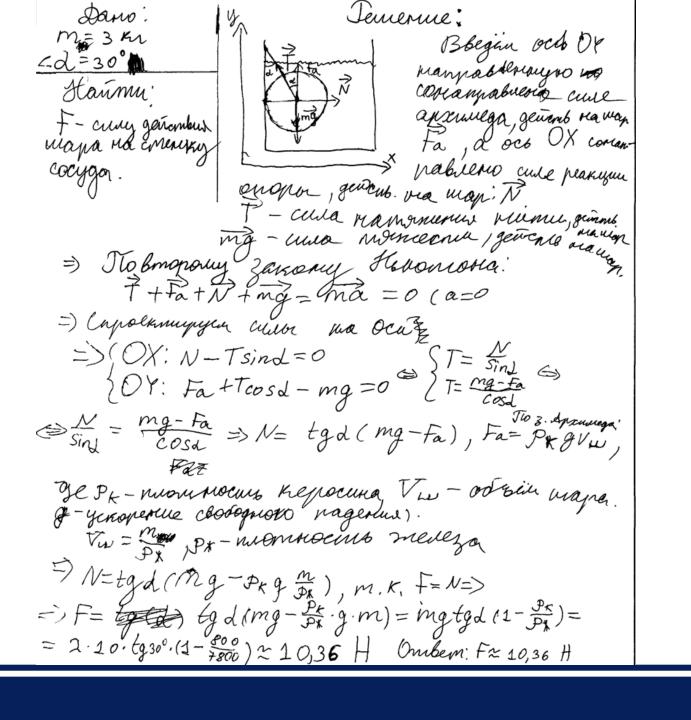

где ρ_0 – плотность керосина.

Выполняя математические преобразования с формулами (1)-(3), получим:

$$N = \frac{mg(\rho - \rho_0) \operatorname{tg} \alpha}{\rho} = \frac{2 \cdot 10 \cdot (7800 - 800) \cdot 0,577}{7800} \approx 10 \text{ H}.$$

По третьему закону Ньютона модуль силы, с которым шар действует на стенку, $F = N \approx 10$ H.

Ответ: $F \approx 10$ Н



Критерии оценивания выполнения задания	Баллы
Критерий 1	
Верно обоснована возможность использования законов	1
(закономерностей). В данном случае: выбор ИСО, модель твёрдого	
тела, условия равновесия твёрдого тела относительно	
поступательного и вращательного движения	
В обосновании отсутствует один или несколько из элементов.	0
ИЛИ	
В обосновании допущена ошибка.	
ИЛИ	
Обоснование отсутствует	

Критерий 2	
Приведено полное решение, включающее следующие элементы:	3
I) записаны положения теории и физические законы,	
закономерности, применение которых необходимо для решения	
задачи выбранным способом (в данном случае: условия равновесия	
шара, третий закон Ньютона, закон Архимеда, формула массы	
тела);	
II) сделан правильный рисунок с указанием сил, действующих	
на шар;	
III) описаны все вновь вводимые в решении буквенные обозначения	
физических величин (за исключением обозначений констант,	
указанных в варианте КИМ, обозначений величин, используемых	
в условии задачи, и стандартных обозначений величин,	
используемых при написании физических законов);	
IV) представлены необходимые математические преобразования	
и расчёты (подстановка числовых данных в конечную формулу),	
приводящие к правильному числовому ответу (допускается	
решение «по частям» с промежуточными вычислениями);	
V) представлен правильный ответ с указанием единиц измерения	
физической величины	

Полное верное решение

Bagara 30 Ococristance. 1) Jaccusmyer cuonercy oncrem chrizosomys Czemin Dygem cumant le Moren-2) Onumen per mues som may Mogentoso mbergoio mela, m. K. Frumb cocmabuockin your 30° for Co convention cocygon. 3) Будет счинамь, что мено помошили, Mik noconynamerance gounceruse mayra, T, Fa, mg) palmo neglio, n. K. cylua beca cint pabна пушно, и вращательное движение pabuis myers, m. K. E eau nor berognen Och my Granzeaun npoxogrunden repez Yenry Mana, mo see culos Eggyn nexogum of younge in cyallina mornesumos une byangarouses meno no racuston conjune a separence monuel nacobou Makerage Myleso, 4) III. K. bernown. 1) n 2), mo romino your D Cula generabus mapa na income cocyga grabna cence peanezne onopon & gliconibyrouser na map police per no Truendeny zanony Horomones

Kp1: 1

130 O To cno lance. 90 = 80) kz/m³ 2 = 30 / Vaccusopun V, Sygen crevate es 9 = 1800 kz/w3 Mm 2). h teur nohourue, ucnouszy um mogens un t Ner-3) Aprimenum I zina Hororona 6 UCO 4) Ha teres le deughorry generalyet enna Apminega, Fa = sog 4 5) no III 3 ny Honorora Ner/= /N/ no I 3- my Howrong Dx: Fa + 7 cos x - mg =0 0 9. N-Tsinx=0 To 3-my Aprinnega Fa = gog VT, rge Vi- observing
Observe renea Vi = m gogg m + Ncosd -mg=0 N= mg. (1-80)= 2.10 1- 7300 = 10,4 H Orber 10,4 H

Kp1: 0

Persene: Não Dano: m=2KF 1=300 mg 8=7800 mg 9=10-mg F=?

F+T+F+ N+m8=0.

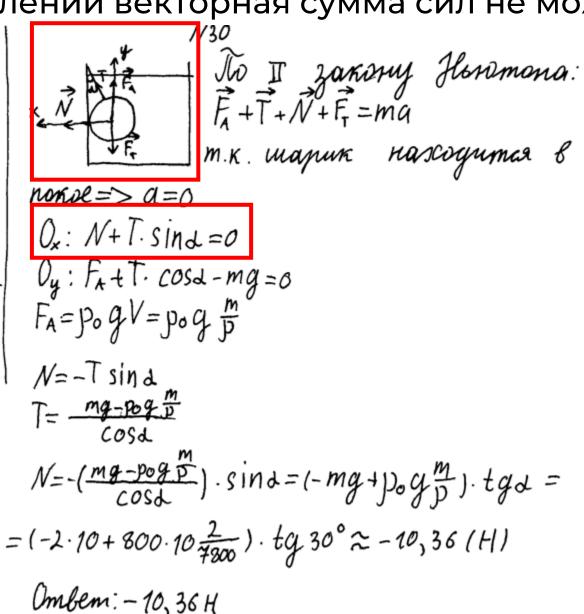
0#: F4-mg+T.cosl=0 Fx=90.g.V T.cosl=mg-Fa(1) V=# 02: N= T. sind (2) (2): Mg-FA = T. sind

A= tg L(mg-FA)

AF= bgd (mg-fog.V)

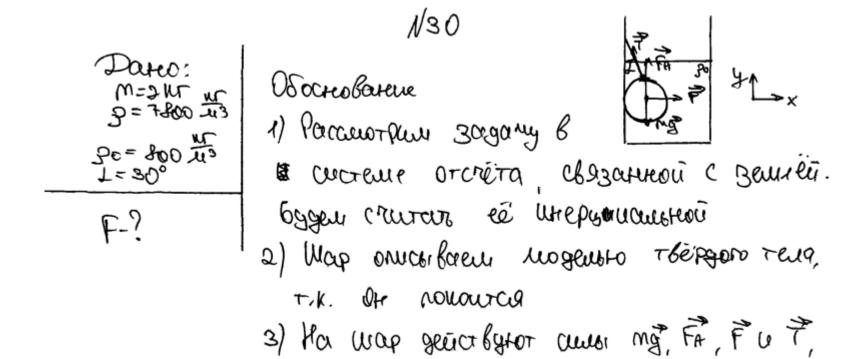
N=tgd(mg-so·s·g)


N=tgd(mg-So·S·F) by 30
N=mg·tgd(1-p=)=2.100 (1-\frac{800}{4900})=10,4 H; MANNING


Ofbet: 10,4 H.

Неверный рисунок + неверная запись 2 закона Ньютона в векторном виде, но верная в проекциях

Kp1: 0

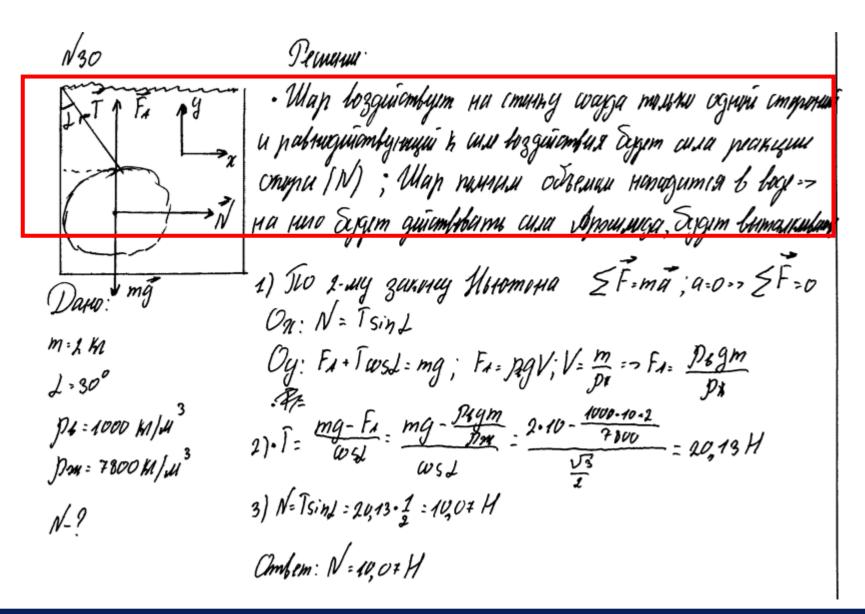

Неверное направление силы реакции опоры, при таком направлении векторная сумма сил не может быть равна

Kp1: 0

Верное решение

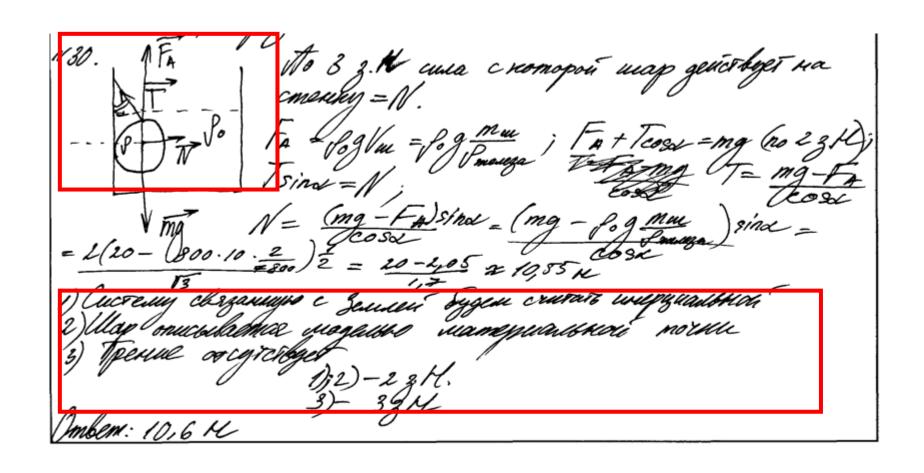
Верное решение

yhosometerne to pacythre.

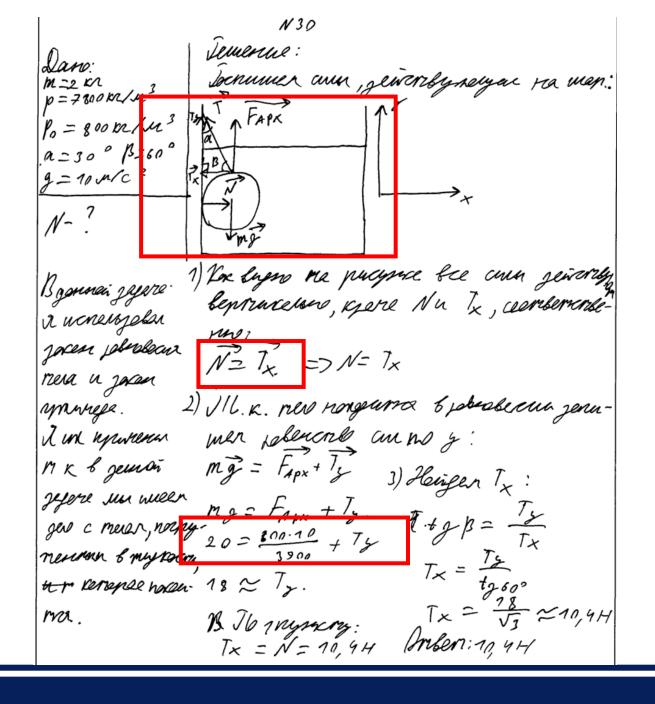

- 4) Map Henogli met, no many homero somicar your Paltro becus: mg+ FA+ F+ = 0
- 5) No 3-ey 3-rey HOHOTCHO, WOOD DOBUT HO CTETY (CULLOC), no rusques pabreoù IFI.

Pennerue.

$$T = \frac{1}{\cos x} (mg - 30 \frac{m}{5}g) = \frac{g}{\cos x} (m - \frac{g}{5}m) = \frac{mg}{\cos x} (r - \frac{g}{5})$$


Kp1: 1

Верное решение по К2. Обоснование неполное.


Kp1: 0

Верное решение по К2. Обоснование неполное.

Kp1: 0

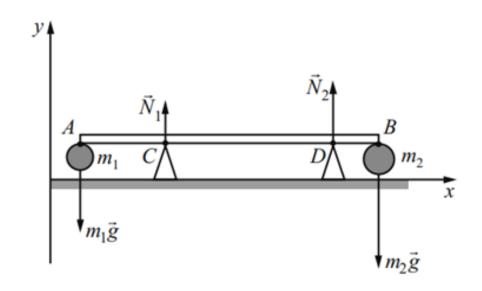


Формулы для силы Архимеда и массы шара представлены в цифрах.

Kp1: 0

ЗАДАЧА 26 Пример-2

Два небольших массивных шара закреплены на концах невесомого стержня AB, лежащего горизонтально на опорах C и D (см. рисунок). Длина стержня L=1 м, расстояние между опорами l=0,6 м, а расстояние AC равно 0,2 м. Масса шара $m_2=0,3$ кг, а сила давления стержня на опору D в 2 раза больше, чем на опору C. Чему равна масса шара m_1 ? Сделайте рисунок с указанием внешних сил, действующих на систему тел «стержень и шары». Обоснуйте применимость законов, используемых для решения задачи.


Возможное решение

Обоснование

- 1. Рассмотрим задачу в системе отсчёта, связанной с Землёй. Будем считать эту систему отсчёта инерциальной (ИСО).
- 2. Описываем стержень с шарами моделью твёрдого тела (форма и размеры тела неизменны, расстояние между любыми двумя точками тела остаётся неизменным).
- 3. Стержень не движется поступательно, поэтому сумма сил, действующих на него, равна нулю.
- 4. Стержень не вращается, поэтому сумма моментов сил относительно оси, проходящих через точку A перпендикулярно плоскости рисунка, равна нулю.
- 5. Согласно третьему закону Ньютона силы, с которыми шары и стержень взаимодействуют друг с другом, равны по модулю и направлены в противоположные стороны.

Критерии оценивания выполнения задания	Баллы
Критерий 1	
Верно обоснована возможность использования законов	1
(закономерностей). В данном случае: выбор ИСО, модель твёрдого	
тела, условия равновесия твёрдого тела относительно	
поступательного и вращательного движения, третий закон	
Ньютона	

Решение

1. На твёрдое тело, образованное стержнем и двумя шарами, действуют силы тяжести $m_1 \vec{g}$ и $m_2 \vec{g}$, приложенные к центрам шаров, и силы реакции опор \vec{N}_1 и \vec{N}_2 . По третьему закону Ньютона модули сил реакции равны соответствующим модулям сил давления стержня на опоры, поэтому $N_2 = 2N_1$ (в соответствии с условием задачи).

2. В инерциальной системе отсчёта *Оху*, связанной с Землёй, условия равновесия тела приводят к системе уравнений:

$$\begin{cases} N_1 + N_2 - m_1 g - m_2 g = 0 & -\text{ центр масс не движется вдоль } Oy; \\ N_1 x + N_2 \left(l + x \right) - m_2 g L = 0 & -\text{ нет вращения вокруг точки } A. \end{cases}$$

Здесь x – плечо силы N_1 (x = AC).

3. С учётом условия $N_2 = 2N_1$ систему уравнений перепишем в виде:

$$\begin{cases} 3N_1 = (m_1 + m_2)g; \\ (3x + 2l)N_1 = m_2gL. \end{cases}$$

Поделив первое уравнение на второе, получим:

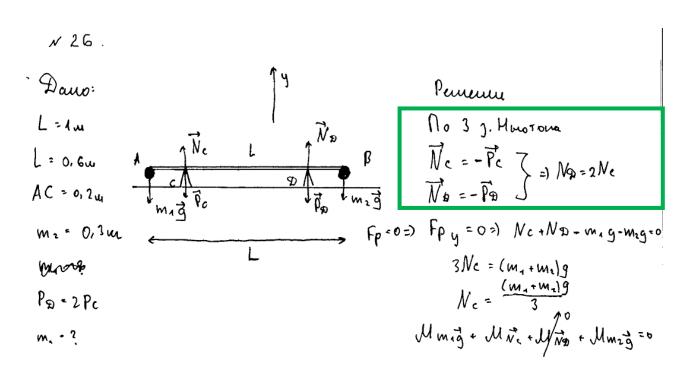
$$\frac{3L}{3x+2l} = 1 + \frac{m_1}{m_2}, \text{ откуда } \frac{m_1}{m_2} = \frac{3(L-x)-2l}{3x+2l} = \frac{3(1-0,2)-2\cdot 0,6}{3\cdot 0,2+2\cdot 0,6} = \frac{2}{3}.$$

4. Отсюда:

$$m_1 = \frac{2}{3}m_2 = \frac{2}{3} \cdot 0, 3 = 0, 2$$
 кг.

Критерий 2	
I) записаны положения теории и физические законы,	3
закономерности, применение которых необходимо для решения	
задачи выбранным способом (в данном случае: условия равновесия	
твёрдого тела относительно поступательного и вращательного	
движения; третий закон Ньютона);	
II) сделан рисунок с указанием сил, действующих на стержень;	
III) описаны все вновь вводимые в решении буквенные обозначения	
физических величин (за исключением обозначений констант,	
указанных в варианте КИМ, обозначений величин, используемых	
в условии задачи, и стандартных обозначений величин,	
используемых при написании физических законов);	
IV) представлены необходимые математические преобразования	
и расчёты (подстановка числовых данных в конечную формулу),	
приводящие к правильному числовому ответу (допускается решение	
«по частям» с промежуточными вычислениями);	
V) представлен правильный ответ с указанием единиц измерения	
физической величины	

N 26 Douo 1) Tougeur commence cuemence omerê mo unepyra-1640ii u ne nagburaseoù omnument un zeuru l=0,62 2) m.k cuc medio Noscoge me le pobus becery, mo consum naven mob omis cumento mora A neprus qu'icy sepon pacquicy =0 M2 = 0,3 K1 3) Guameru Mattagrape N/ pally We garner.
No = 2Nc & con epone my = 0. No=2Nc 6=1-0-l=0124 ч) Стерзичень видем спитьми абсолю-Muc + Mup + Mong + Mong = 0 - Nea - No (a+l) + m.gl=0 no Ejalou Houmuno! No + Np = mig + mag 3Nc= mig+mig No= 2Nc migle = Nea + 2Nc (a+l)


= 0,2 km

Omben: 0,214.

m, (3/20-1) = m2

0/2

Задание 26 Работа 2

- 1. Tygen parametrubeut jagary b cuentelle otcreta, chyannoù c'henneñ. Tygen crutar sty cuentery otcreta uneprenarbuoù.
- 2 Буден описывать снетему п стерпнешь нарт" модень абсальтно твердого тема (форма и размеры системы не присиленото, расктыемие менеду двуже мобили точками снетемь неизмин нов.
- 3. The cuernesse « Cepuceus + mapu" messegure le probubbleum, que me crysobegunde 2 y curbule probubbleum adeamistre rolpgoro rela!

 O ornourendus no crysoarendusoro glumentre. probuggenci bytous ex bremun cum pabue » O.
 - © отноштеньно вранятельного двинения. сумма маненты вих висты в пенит ет равис в (будин расстетривень манент вих вистим сил отноштеньно оси, фироходещей геру Д пертидину пер но имоскости рисумса.)
 - 4. BUCO que cue Ne 4 Pe moneno janucari 3 janon Hisorona:
 Ne = Pe
 - 5. D U CO que un No v Po manero jamento jamento jamento la Hortona: No = -Po

N 26.

Dano:

L=1.u.

CD=l=0.6.u.

AC=0.2.u

Coura gibrerus M2=0.3 kz

Ha ongra sta Q = 2

compression ongra

Ha ongra

Brosse L

Slatimu'

M.=?

Percence

The 2 sakens decompre

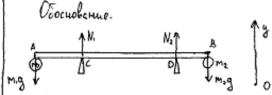
m. g+ m2g = N,+ N2

To npc bry signerind.

N, AC+ N2 (AC+E)= n2gL

{m, g+ m2g = N, + N2

{m, g+ m2g = N, + N2


N, AC+ N2(AC+E) = m2gL

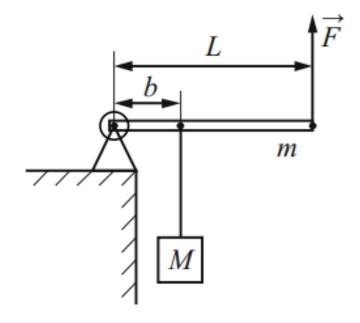
{ N2 = 2N, m,g = N1+2N4 - m2g N1-AC+ 2N1(AC+1) = m2g]

$$\begin{cases} m, g = 3N_1 - m_2 g \\ 3N_1 \cdot AC + 2N_1 \ell - m_2 g L \end{cases}$$

$$\begin{cases} N_1 = \frac{m_2 q L}{2\ell + 3AC} \\ m_1 g = \frac{3m_2 4 L}{3AC + 2\ell} \\ m_2 = \frac{3m_2 L}{3AC + 2\ell} = \frac{430.3n_2 \cdot \ell_m}{3 \cdot 0.2n_1 + 2 \cdot 0.6m_2} = 0.5n_2. \end{cases}$$

Ombem: M1 = 0,5 K2

- (1) Введен менодвижну 2100, связанную с 13 годан Введён ось Оу, перпендикулярную Зашле, Стержени, твердое тело, покоитья отностично т.к.
- © По 2-му закону выстона, вышт рекорение стержена по ося влу ровно нумо, векторная сумпа сем по забень нумо по этой оси ревна нумо
- 3) По привиму маментов сил, при опсупствии вращения стероска смерых манентов сил напентов сил равна нуль опносительно оси, введённой перпенуих напентов поскоети за расумка в поске А


ovocnobanue: Domo: 1, Budepeu uneprizuationino cucmeny oncremo, L=1M chezantyro c 3emier (400). l = 0.6 M2. Flygent onucubant ineximens mageus adco-Ac=0,2m=6 worksto mbejogoro mena, max rax prozuepu me $m_2 = 0.3 RN$ no rensmetible a pacconarine metagy modomin E==3 grund mouraum tonepoura ne uzwersenca & anenneno nocouma omnocumento nocompramenoro a branzamenoro gonsicenti, Tarobie ngoras pabnobecur mu hochynameubabu gbusiceniui --cymula beex cus gestembysources na emporteur, palma 0: EF = 0; you obve 'plabnobeche Apu brawarherbnail gbusicenui - agulua monennol cui pabha ryun: EM=6 4. Conferment hebecautifu, znarum na nero ne geverneyem cuva mersicecmu 5 TO III zakary floromona cuité, c komopar emerorent gabien pa ongre 6 moukase C u D, palsier no maggirs cuman plantium brogne monulonarosserier no nampalierano: [Fil=[Ni]; Demenue: JI_{1} , K. $\Sigma F_{i} = 0$, $m_{1}g + m_{2}g = N_{1} + N_{2}$ $|F_{1}| = |N_{1}|$; $|F_{2}| = |N_{2}| \Rightarrow (m_{1} + m_{2})g = F_{1} + F_{2}$ The yearshure == == > F2=2F1 = Jaconimera mabino manerinal un misocumensio mouru C: Thangualu (m1+m2) = 3F, => My = myde; Wi-ter = Franger M Y => m = 3F1 - m1 Decruisely sporting undermos for ontroumers mayken N==mag(l-k-1) m,9b= N2l; |N2|= |F2|=2F, => => migl = 2Fil Sacruel e maluo wallemob cui onnocumentono morren m2gk= N, l; |N1=|F1|=F => m2gk=F1l m29k = 2 => m1 = k ·2 $k=L-l-b \Rightarrow \frac{m_1}{m_2} = \frac{L-l-b}{2} = m_1 = \frac{m_2(L-l-b)\cdot 2}{2}$ $m_1 = \frac{2 - 0.3 \left(1 - 0.6 - 0.2\right)}{0.2} = 0.6 \left(\text{RM}\right)$

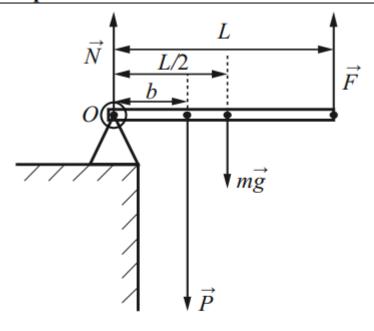
Ombem: m, = 20 0,6 kg.

1/1

ЗАДАЧА 22 Пример-3

Рычаг, сделанный из однородного стержня массой m=10 кг и длиной L=4 м, шарнирно закреплён (см. рисунок). К рычагу подвешен груз массой M=75 кг. Если к концу рычага приложена вертикальная сила, модуль которой F=350 H, то рычаг находится в равновесии. Определите расстояние b от оси шарнира до точки подвеса груза, считая, что трение в шарнире отсутствует.

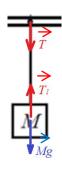
Возможное решение

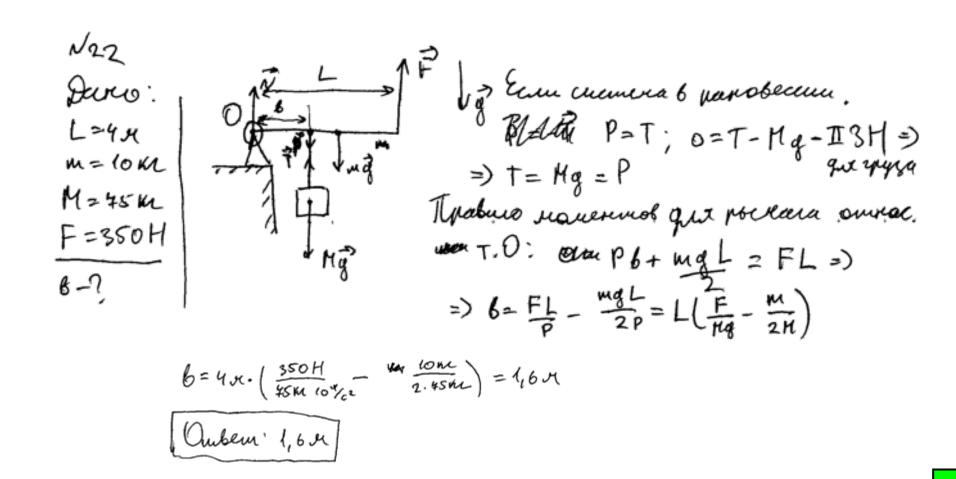

- 1. Расставим силы, действующие на рычаг (см. рисунок).
- 2. Систему отсчёта, связанную со столом, на котором закреплён шарнир, считаем инерциальной.
- 3. Считая, что рычаг покоится, примем, исходя из третьего и второго законов Ньютона, что $\left| \vec{P} \right| = \left| M\vec{g} \right|$.
- 4. Рассмотрим равновесие рычага относительно оси вращения шарнира O, указав плечи сил на рисунке.

$$O: Mg \cdot b + \frac{1}{2} mgL - FL = 0.$$

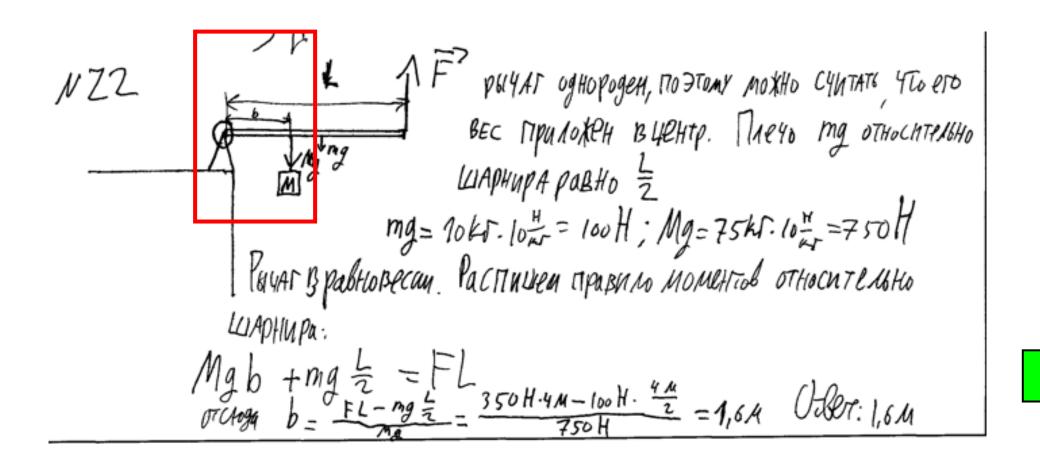
Отсюда

$$b = \frac{F - 0.5mg}{Mg} \cdot L = \frac{350 - 0.5 \cdot 10 \cdot 10}{75 \cdot 10} \cdot 4 = 1.6$$
 м.


Ответ: b = 1,6 м


Критерии оценивания выполнения задания	Баллы	
Приведено полное решение, включающее следующие элементы:	2	
I) записаны положения теории и физические законы,		
закономерности, применение которых необходимо для решения		
задачи выбранным способом (в данном случае: условие равновесия		
абсолютно твёрдого тела с закреплённой осью вращения);		
II) описаны все вновь вводимые в решении буквенные обозначения		
физических величин (за исключением обозначений констант,		
указанных в варианте КИМ, обозначений, используемых в условии		
задачи, и стандартных обозначений величин, используемых при		
написании физических законов);		

III) представлены необходимые математические преобразования			
и расчёты (подстановка числовых данных в конечную формулу),			
приводящие к правильному числовому ответу (допускается решение			
«по частям» с промежуточными вычислениями);			
IV) представлен правильный ответ с указанием единиц измерения			
искомой величины			


Задание 22 Работа 1

$$T = T_1 = Mg$$

Задание 22 Работа 2

1

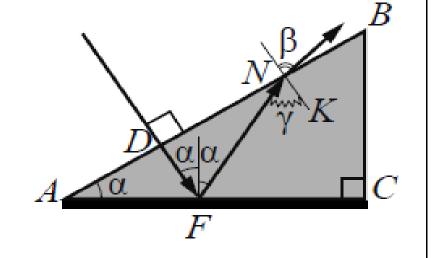
Задание 22 Работа 3

22)
$$D_{200}$$
: N_{1} : N_{2} : N_{3} : N_{5} : N_{7} : N_{7

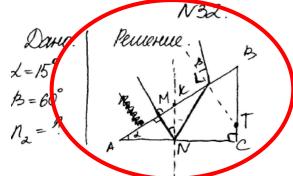
Orber, 6 = 1.6 M

ЗАДАЧА 23 Пример- 4

Нижняя грань AC прозрачного клина посеребрена и представляет собой плоское зеркало. Угол при вершине клина $\alpha = 15^{\circ}$. Луч света падает из воздуха на клин перпендикулярно грани AB, преломляется и выходит в воздух через ту же грань AB, но уже под углом преломления $\beta = 60^{\circ}$. Определите показатель преломления материала клина. Сделайте рисунок, поясняющий ход луча в клине.



Возможное решение


- 1. Поскольку луч падает на грань AB перпендикулярно, он на ней не преломляется, а, падая на грань AC, согласно закону отражения света отражается под тем же углом α . Следовательно, $KN \mid\mid FD$, $\gamma = 2\alpha$.
- 2. Закон преломления света в точке N: $n \cdot \sin \gamma = \sin \beta$, или $n \cdot \sin 2\alpha = \sin \beta$.

Получаем:
$$n = \frac{\sin \beta}{\sin 2\alpha} = \frac{\sin 60^{\circ}}{\sin 30^{\circ}} = \sqrt{3} \approx 1,7$$
.

Ответ: $n \approx 1,7$

ĺ			
	Критерии оценивания выполнения задания	Баллы	
	Приведено полное решение, включающее следующие элементы:	3	
	I) записаны положения теории и физические законы,		
	закономерности, применение которых необходимо для решения		
	задачи выбранным способом (в данном случае: формула для закона		
	преломления света, закон отражения света, соотношение углов);		
	II) сделан правильный рисунок с указанием хода луча в клине;		
	III) описаны все вновь вводимые в решении буквенные обозначения		
	физических величин (за исключением обозначений констант,		
	указанных в варианте КИМ, обозначений величин, используемых в		
	условии задачи, и стандартных обозначений величин, используемых		
при написании физических законов);			
	IV) проведены необходимые математические преобразования и		
	расчёты, приводящие к правильному числовому ответу		
	(допускается решение «по частям» с промежуточными		
	вычислениями);		
	V) представлен правильный ответ		
	ИЛИ	1	
	Сделан только правильный рисунок с указанием хода луча в клине		

1) M.K uyr hepnengrugnapen APS => puwawitas.

2) Danee wyr AC отразиты от AC под таким же урлам

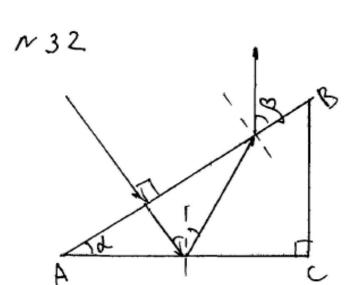
3) Pacamorphing & AMN.

$$2A = 2 \implies 24NM = 90 - 2 \implies 2MNR = 90 - (90 - 2) = 2$$

Uz (2) cuegyem, rmo $2MNR = 2RNL = 2$.

4) Dance ompaxenusió my spenammerce u boxogur b bozogyx nog yman s.

5) My SINAY No. 81 NLT = N. 81 NB (1), No. - NORAZATENE NORMALIAMENTE BOZOGIKA.


$$\angle MKN = 90-L \Rightarrow \angle NKL = 180-90-L) = 180-190+L$$

$$\angle KLN = 180 - \angle NKL - \angle KNL = 180 \Rightarrow 180 - (90+L) - L = 180 \Rightarrow 180 - (90+L$$


Ombem: 1,73.

32. Dano: Pecucrae L = 150 B=60°. CLAB nn -? Tan kan uyr reprengusyaepen 1 A KO = 90-2 AB, TO Day your on represences тоходит без приношиний. LOKE= &L. При падекии инта с на грань АС ок отреmalie nog ymon & INK F= 2 OKH = L. 2 OKF=1 11KF+2 OKH=2 d=30° LOFK = co; to ear trobe you no bropmone ragerue eyra na racu A/3 paben 30°=1 Tonga: no sin B= na siny; na = no sing $n_{k} = \frac{1.81 \times co}{5ik80} = \frac{1\sqrt{5.2}}{2.1} = \sqrt{3} \approx 1,73$

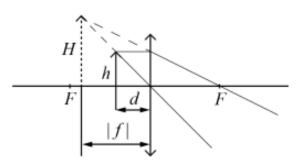
__

$$n = \frac{\text{Sind}}{\text{SinB}} \quad \angle A = 90$$

$$A = \frac{\text{SinB}}{\text{SinB}} \quad \angle B = 15^{\circ}$$

$$A = \frac{\text{SinB}}{\text{SinB}} \quad \angle B = 15^{\circ}$$

ЗАДАЧА 23 Пример- 5


Собирающая линза даёт мнимое, увеличенное в 5 раз изображение предмета, которое находится на расстоянии 20 см от линзы. Постройте изображение предмета в линзе. Определите фокусное расстояние линзы.

Возможное решение

Собирающая линза даёт мнимое, увеличенное в 5 раз изображение предмета, которое находится на расстоянии 20 см от линзы. Постройте изображение предмета в линзе. Определите фокусное расстояние линзы.

Возможное решение

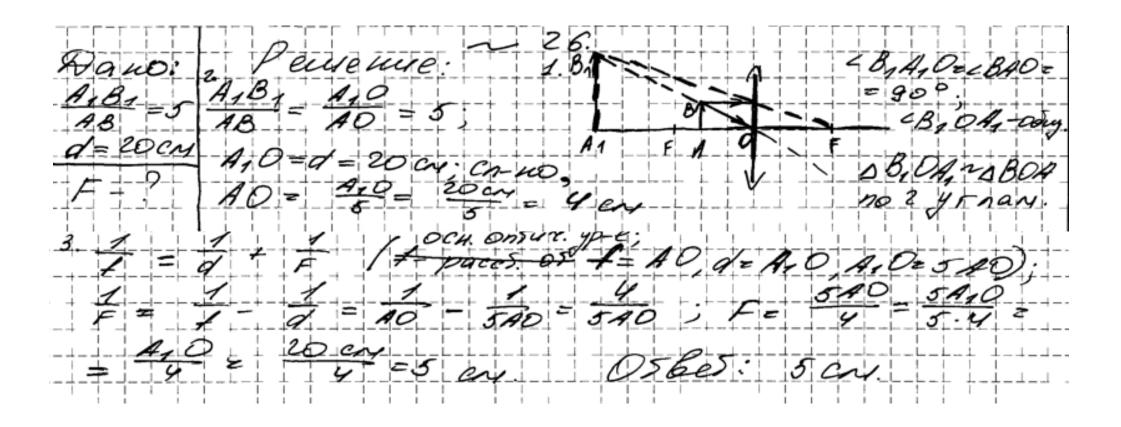
Построим изображение предмета в линзе, используя свойства луча, проходящего через главный оптический центр линзы, и луча, параллельного главной оптической оси.

По формуле линзы с учётом того, что изображение мнимое $\frac{1}{F} = \frac{1}{d} - \frac{1}{|f|}$.

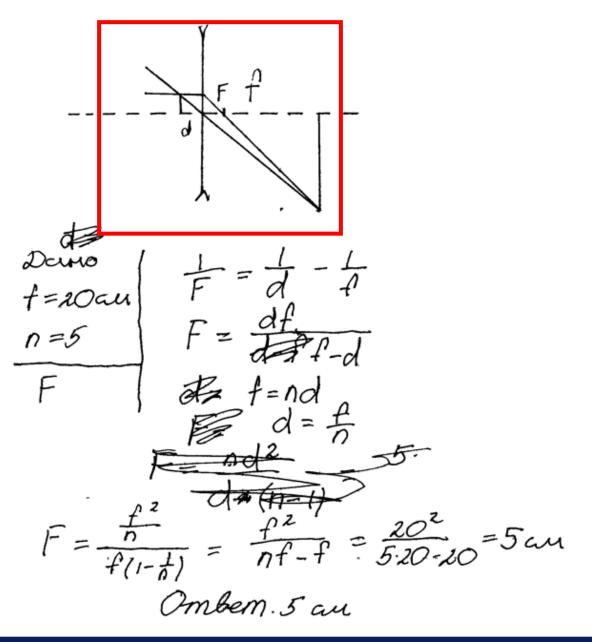
Увеличение линзы $\Gamma = \frac{H}{h} = \frac{|f|}{d}$. Следовательно, $d = \frac{|f|}{\Gamma}$.

Найдём фокусное расстояние линзы: $\frac{1}{F} = \frac{\Gamma - 1}{|f|}$; $F = \frac{20}{5 - 1} = 5$ см.

Ответ: F = 5 см

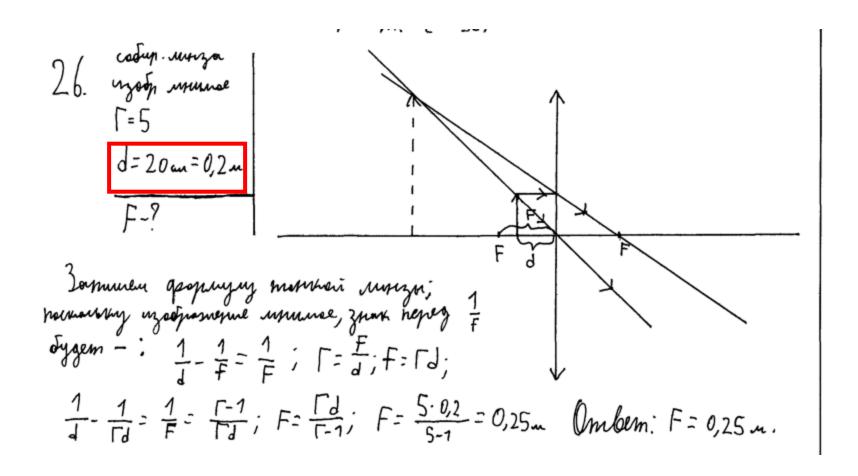

Критерии оценивания выполнения задания	Баллы
Приведено полное решение, включающее следующие элементы:	2
1) записаны положения геории и физические законы, закономерности, применение которых необходимо для решения	
задачи выбранным способом (в данном случае: формула линзы,	
формула увеличения линзы); Н) построено изображение предмета в линзе;	
III) описаны все вновь вводимые в решении буквенные обозначения физических величин (за исключением обозначений констант, указанных в варианте КИМ, обозначений, используемых	
в условии задачи, и стандартных обозначений величин, используемых при написании физических законов);	
IV) представлены необходимые математические преобразования и расчёты (подстановка числовых данных в конечную формулу),	
приводящие к правильному числовому ответу (допускается решение	
«по частям» с промежуточными вычислениями);	

V) представлен правильный ответ с указанием единиц измерения искомой величины



Правильно записаны все необходимые положения теории,	1		
физические законы, закономерности, и проведены			
преобразования, направленные на решение задачи, но имеется			
один или несколько из следующих недостатков.			
Записи, соответствующие пунктам II и III, представлены			
не в полном объёме или отсутствуют.			
И (ИЛИ)			
В решении имеются лишние записи, не входящие в решение			
(возможно, неверные), которые не отделены от решения			
и не зачёркнуты.			
И (ИЛИ)			
В необходимых математических преобразованиях			
или вычислениях допущены ошибки, и (или) в математических			
преобразованиях/вычислениях пропущены логически важные			
шаги.			
1110111			
И (ИЛИ)			
И (ИЛИ)			
И (ИЛИ) Отсутствует пункт V, или в нём допущена ошибка (в том числе	0		
И (ИЛИ) Отсутствует пункт V, или в нём допущена ошибка (в том числе в записи единиц измерения величины)	0		
И (ИЛИ) Отсутствует пункт V, или в нём допущена ошибка (в том числе в записи единиц измерения величины) Все случаи решения, которые не соответствуют вышеуказанным	0 2		

Nº23/1


N26

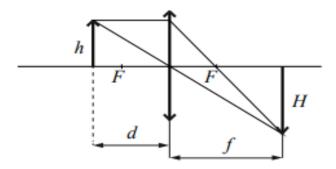
Nº23/ 2

1

Nº23/3

Nº23/4

N26							1
_	u	Perren	ul				Ì
Dano Cm = 5 d = 20 cm	0,2	.1	lo lo	\$ A			
w + \	l cuma con	a S=1	A. (2 + d2	d F E	F	_	
. An		<i>1</i> 00 -	L =	1.	1	/	AC 5
V HD	6 0 V	CDE	K = 5	7 K-	noogn no	goome /	EC 1
S EK	FNE	. ABE~	2 CFP		EC = 1	$\frac{4C}{5} = \frac{0.20}{5}$	=> EC = 1 0 = 2000 =400
M	ACTE	FC+CF	= AB	TE =	20+CF N+CF	= AB ED+DK	= 5AB AB+5DK
ED	+DK =	EC+CF CF	++	DK	<u>₩</u> + 1	DR=	UED CF
2 <u>0</u>	+ CF =	5AB AB + 20	ED .	2 <u>0</u> 4	+CF = 5 +CF = CF	CF	
					0 = 4 CF 0 = 4 CF		
					VF=5 cm	O+bet	5 cm


2

ЗАДАЧА 23 Пример- 6

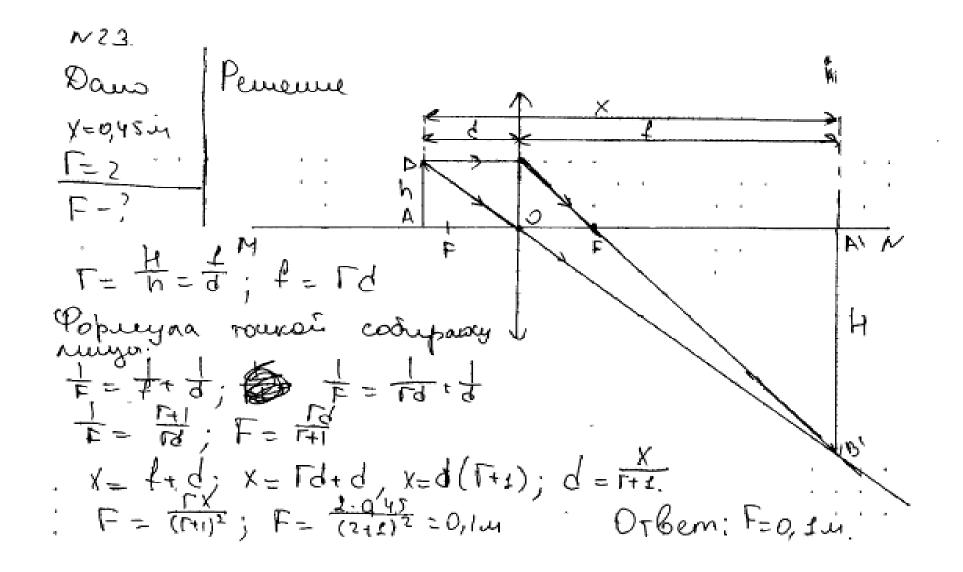
Предмет расположен на главной оптической оси тонкой собирающей линзы. Расстояние между предметом и его действительным изображением равно 45 см. Увеличение (отношение высоты изображения предмета к высоте самого предмета) Γ = 2. Найдите фокусное расстояние линзы. Постройте изображение предмета в линзе.

Возможное решение

Построим изображение предмета в линзе, используя свойства луча, проходящего через главный оптический центр линзы, и луча, параллельного её главной оптической оси.

По формуле тонкой линзы $\frac{1}{F} = \frac{1}{d} + \frac{1}{f}$, а расстояние между предметом и изображением L = d + f.

Увеличение линзы $\Gamma = \frac{H}{h} = \frac{f}{d}$. Следовательно, $f = d\Gamma$. Отсюда


 $L=d+f=(\Gamma+1)d$. Тогда $d=\frac{L}{\Gamma+1}=\frac{45}{2+1}=15$ см, f=L-d=45-15=30 см.

Найдём фокусное расстояние линзы: $F = \frac{fd}{L} = \frac{30 \cdot 15}{45} = 10$ см.

Ответ: F = 10 см

Критерии оценивания выполнения задания	Баллы
Приведено полное решение, включающее следующие элементы:	2
 записаны положения теории и физические законы, 	
закономерности, применение которых необходимо для решения	
задачи выбранным способом (в данном случае: формула тонкой	
линзы, формула для увеличения линзы);	
II) приведён верный рисунок для построения изображения предмета	Правильно записаны все необходимые положения теории, 1
в линзе;	физические законы, закономерности, и проведены преобразования,
III) описаны все вновь вводимые в решении буквенные обозначения	
физических величин (за исключением обозначений констант,	из следующих недостатков.
указанных в варианте КИМ, обозначений, используемых	
в условии задачи, и стандартных обозначений величин, используемых	Записи, соответствующие пунктам II и III, представлены
при написании физических законов);	не в полном объёме или отсутствуют. И (ИЛИ)
IV) представлены необходимые математические преобразования	В решении имеются лишние записи, не входящие в решение
и расчёты (подстановка числовых данных в конечную формулу),	(возможно, неверные), которые не отделены от решения
приводящие к правильному числовому ответу (допускается решение	и не зачёркнуты.
«по частям» с промежуточными вычислениями);	И (ИЛИ)
V) представлен правильный ответ с указанием единиц измерения	В необходимых математических преобразованиях или вычислениях
искомой величины	допущены ошибки, и (или) в математических преобразованиях/
	вычислениях пропущены логически важные шаги. И (ИЛИ)
	Отсутствует пункт V, или в нём допущена ошибка (в том числе
	в записи единиц измерения величины)
	Все случаи решения, которые не соответствуют вышеуказанным 0
	критериям выставления оценок в 1 или 2 балла
	Максимальный балл 2

N23.		1		
h - forcoma morparemue nhem H - houna nhemiema.	una	$\frac{h}{N} = 2$.		
d-pacemonne on mohares	uue go uuuza	d+f=	45 cm	
a-pacemoune on meenenc	r go ennigh			
The monked ungo:	to no	youro s-ob	:	
1 - 1 + 1	$\begin{cases} \frac{h}{H} = \frac{f}{d} \\ d + f = \frac{f}{d} \end{cases}$? ==2=> f=	= 2d (5)	,
ı	d++=	45	9	
	⊕	3d =45 = >g	L = 15cm = 2 · 15 = 30cm	<i>/</i> .
MA	et :			
	h			,
		: ::		
14				
$\frac{1}{F} = \frac{1}{d} + \frac{1}{f} = \frac{1}{15} + \frac{1}{30} = -\frac{1}{15}$	$\frac{3+1}{30} = \frac{3}{30} =$	10: f	10(=)	
F = 10 cm.				:
Onilem: F= 40 cm.				
N24.				:
Dano: D = 3 mons anal =	50 kAn	T3-?	N24	
		-	ем, дальше.	

N23. F=2 [H] d-paretonene go ngosparamel f-paretonene go ngosparamel f-paretonene go ngosparamel f-paretonene go ngosparamel

Pewerne
$$\begin{vmatrix}
\Gamma = \frac{F}{J} = 2 & \Gamma_H = F \\
\frac{1}{F} = \frac{1}{J} + \frac{1}{F}
\end{vmatrix}$$

Dano:
$$\int = \frac{f}{d} = 7 = \int d$$

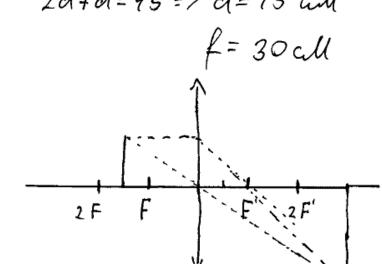
 $d = 0.45 \text{ M}$ $f = \text{QUENTALL 2.} 0.45 = 0.9 \text{ M}$
 $\int = 2$ $\frac{1}{F} = \frac{1}{d} - \frac{1}{F}$
 $f = 0.45 - 0.9 = \frac{10}{9}$
 $f = 0.9 \text{ M}$

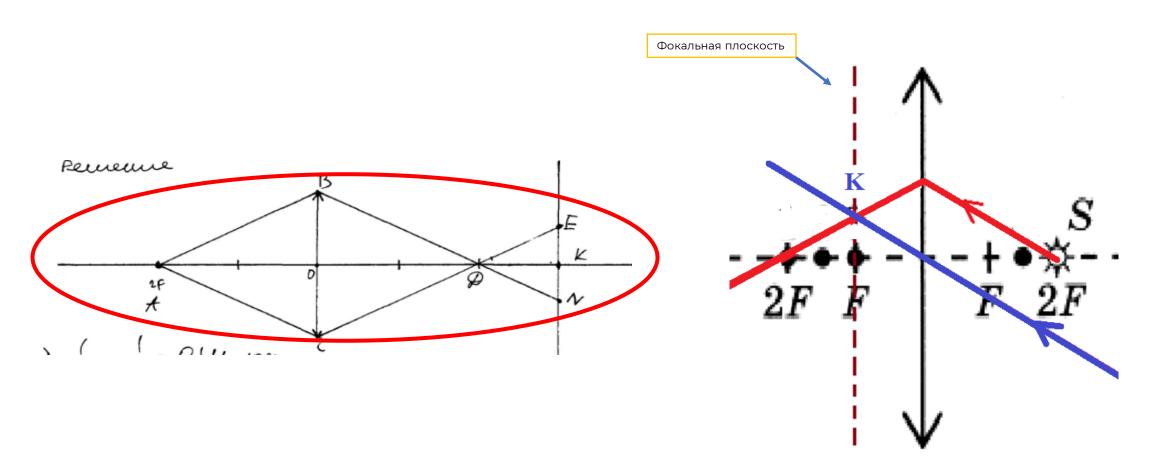
gano.

Demercue:

$$f = 2$$

$$f = d = 45 \text{ au}$$

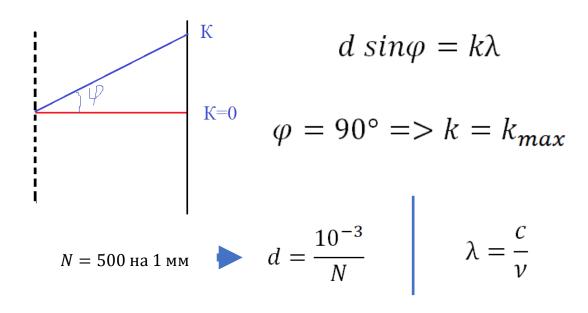

$$f = \frac{H}{R} = \frac{f}{d} + \frac{H}{R} = \frac{h}{g} + \frac{h}{g} = \frac{h}{g} + \frac{h}{g} = \frac{h}{g} + \frac{h}{g} = \frac{h}{g} = \frac{h}{g} + \frac{h}{g} = \frac{$$


$$F = \frac{f}{d} = 2$$

$$F = \frac{f}{d} = 2$$

$$\frac{1}{F} = \frac{1}{f} + \frac{1}{d} = \frac{d+f}{fd}$$

$$F = \frac{f d}{d+f} = \frac{15.30}{45} = 10 \text{ all}$$


СПАСИБО ЗА ВНИМАНИЕ!

На дифракционную решётку, имеющую 500 штрихов на 1 мм, перпендикулярно ее поверхности падает узкий луч монохроматического света частотой $5 \cdot 10^{14} \, \Gamma$ ц. Каков максимальный порядок дифракционного максимума, доступного для наблюдения?

Ответ:	

Решение

$$\frac{10^{-3}}{N} \sin 90^{\circ} = k_{max} \frac{c}{v}$$

$$k_{max} = \frac{10^{-3}v}{Nc} = \frac{10^{-3} \cdot 5 \cdot 10^{14}}{500 \cdot 3 \cdot 10^{8}} = 3$$