Лабораторная работа № 5.4

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ПУАССОНА

Цель работы

Изучению сложных видов деформаций и связи между ними. Экспериментальное определение коэффициента Пуассона.

Идея эксперимента

Рассматриваются вертикальные (поступательные) и горизонтальные крутильные колебания пружинного маятника (маятника Уилберфорса). Из измерения периодов крутильных и вертикальных колебаний маятника, определяется коэффициент Пуассона.

Теоретическое введение

Маятник Уилберфорса состоит из пружины 1 с подвешенным на ней составным металлическим телом, состоящим из цилиндра 2,

прутка (спицы) 3 с перемещаемыми по ней дисками 4 (рис. 5.4.1). Верхний конец пружины закреплен на консоли 5. Пружина обладает продольной (k_1) и крутильной (k_2) жесткостью, поэтому маятник может совершать как продольные, так и крутильные колебания. Крутильные колебания связаны с сжатием (растяжением) слоев материала вдоль оси витков пружины, а продольные с деформацией кручения, сводимой к сдвигу слоев в поперечном сечении материала пружины. Известно, что модуль сдвига G связан с модулем Юнга Е уравнением (5.41). Наличие одной деформации ведет к появлению другой.

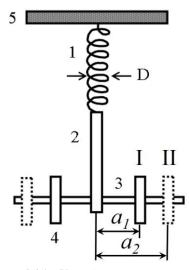


Рис. 5.4.1. Устройство пружинного

При растяжении пружины с малыми углами наклона витков к горизонтали, деформации сжатия малы по сравнению с деформацией сдвига. Это позволяет при растяжении пружины рассматривать только вертикальные колебания. При ее закручивании можно пренебречь деформацией сдвига и рассматривать только крутильные

колебания. При этих условиях легко определить коэффициент Пуассона по измерениям периодов двух типов колебаний груза на пружине.

Вертикальные колебания. Деформация кручения проволоки пружины при вертикальных колебаниях вызывается моментом M внешних сил. В том случае, когда груз подвешен на оси пружины, M равен

$$M = \frac{mgD}{2} \quad , \tag{5.4.1}$$

где m — вся масса груза, g — ускорение свободного падения, D — диаметр пружины.

Вся масса т груза равна

$$m = m_1 + 2m_2 + 2m_3, (5.4.2)$$

где m_1 - масса цилиндра A (рис.5.4.2), m_2 - масса стержня B, m_3 - масса диска C.

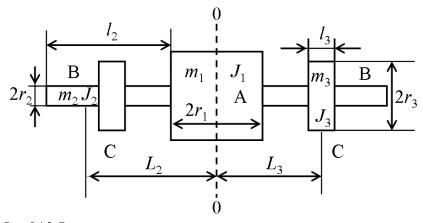


Рис. 5.4.2. Вид составного металлического груза.

В результате закручивания элемента длины dl проволоки на угол $d\phi$ нижний конец проволоки опустится на $\mathrm{d}x = \frac{D}{2}\mathrm{d}\phi$. Используя закон Гука для деформации кручения и интегрируя по всей длине проволоки получаем

$$mg = \frac{f}{(D/2)^2}x$$
, (5.4.3)

где f — модуль кручения для пружины, x — смещение груза по вертикали.

С учетом связи между модулем кручения и модулем сдвига (5.9), можно получить выражение для коэффициента жесткости k_1 пружины при вертикальных колебаниях груза (без учета деформации сжатия)

$$k_1 = \frac{f}{(D/2)^2} = \frac{Gd^4}{8nD^3},$$
 (5.4.4)

здесь d — диаметр проволоки пружины, n — число витков проволоки. При малых вертикальных колебаниях уравнение движения груза можно записать в виде

$$m\ddot{x} = -k_1 x . \tag{5.4.5}$$

Период вертикальных колебаний $T_{\rm B}$ равен

$$T_{\rm B} = 2\pi \sqrt{\frac{m}{k_{\rm l}}}$$
 (5.4.6)

Зная период вертикальных колебаний с помощью формулы (5.4.6) можно рассчитать продольную жесткость пружины

$$k_1 = \frac{4\pi^2 m}{T_R^2} \,. \tag{5.4.7}$$

Крутильные колебания. В случае крутильных колебаний маятника проволока пружины испытывает деформацию изгиба, причем в каждом малом объеме происходит деформация сжатия или растяжения. Рассмотрим деформацию элемента проволоки длины *dl* и кругового поперечного сечения.

Учитывая, что при относительном удлинении внешнего слоя на $d \varepsilon$, угол $d \varphi$ между поперечными сечениями проволоки пружины,

расположенными на расстоянии
$$dl$$
, меняется на величину $\varepsilon \frac{\mathrm{d}l}{d/2}$,

можно установить связь между моментом внешних сил и углом закручивания пружины из-за деформации участка длиной dl.

$$Mdl = EJ_S \ d\varphi, \tag{5.4.8}$$

где J_S — момент инерции поперечного сечения проволоки (традиционно вводимый при анализе деформации изгиба).

После интегрирования вдоль всей длины пружины $l = n \; \pi D$ получаем

$$M = \frac{EJ_S}{l} \varphi = \frac{Ed^4}{64nD} \varphi. \tag{5.4.9}$$

Отсюда следует, что коэффициент жесткости k_2 пружины при крутильных колебаниях (без учета деформации сдвига) равен

$$k_2 = \frac{Ed^4}{64nD},\tag{5.4.10}$$

Уравнение движения груза в случае крутильных колебаний имеет вид

$$J\ddot{\varphi} = -k_2\varphi, \tag{5.4.11}$$

где J — момент инерции груза, подвешенного к нижнему концу пружины (включая спицу с дисками C), ϕ — угловое смещение груза.

Момент инерции Ј равен

$$J = J_1 + 2J_2 + 2J_3, (5.4.12)$$

где J_1 –момент инерции цилиндра A массы m_1 и радиуса r_1 , равный

$$J_1 = \frac{1}{2} m_1 r_1^2 \,; \tag{5.4.13}$$

 $2J_2$ — момент инерции стержней В массы m_2 каждый, радиуса r_2 , длины l_2 , равный

$$2J_2 = 2m_2L_2^2 + \frac{2m_2}{12}(l_2^2 + 3r_2^2); (5.4.14)$$

 $2J_3$ — момент инерции двух дисков С массы m_3 каждый, радиуса r_3 , толщины l_3 .

Здесь L_2 и L_3 – расстояния от оси цилиндра A до центра масс соответственно стержня B и диска C.

Для периода крутильных колебаний $T_{\rm вр}$ из (5.4.11) получаем.

$$T_{\rm Bp} = 2\pi \sqrt{\frac{J}{k_2}} \ . \tag{5.4.15}$$

Величину $T_{\rm вр}$ можно изменять, меняя момент инерции J путем перемещения дисков C вдоль стержней ${\bf B}^*$. Момент инерции маятника можно записать в следующем виде

$$J = J_0 + 2m_3 l^2, (5.4.16)$$

где J_0 –момент инерции цилиндра со стержнем B без учета дисков C, l – расстояние от оси цилиндра до центра диска C.

 $^{^*}$ В этом случае период $T_{\rm B}$ не изменяется, так как масса маятника m и жесткость пружины k_1 остаются постоянными.

$$J_0 = \frac{m_1 r_1^2}{2} + \frac{m_2 L^2}{12} \,, \tag{5.4.17}$$

Где L длина стержня.

Определение коэффициента μ Пуассона через коэффициенты жесткости k_1 и k_2 .

Учитывая связь между коэффициентом Пуассона μ , модулем упругости E и модулем сдвига G, а также соотношения (5.4.4), (5.4.10), получаем зависимость коэффициента μ Пуассона от k_1 и k_2

$$\mu = \frac{E}{2G} - 1 = \frac{k_2 \frac{64nD}{d^4}}{2k_1 \frac{8nD^3}{d^4}} - 1,$$
(5.4.18)

$$\mu = \frac{4k_2}{k_1 D^2} - 1. \tag{5.4.19}$$

Связь между крутильными и вертикальными колебаниями. Биения. Груз, подвешенный на винтовой пружине имеет две степени свободы. Груз одновременно совершает два вида движений: крутильные и вертикальные колебания. Это аналогично движению двух маятников, соединенных между собой легкой пружинкой (связанные маятники).

Не изменяя массы составного груза, можно изменить его момент инерции, а следовательно, и период крутильных колебаний. Приближая периоды колебаний груза $T_{\rm B}$ и $T_{\rm Bp}$, можно наблюдать, как и в случае двух связанных маятников, появление биений, т.е. периодических изменений во времени амплитуды крутильных и вертикальных колебаний.

Частота биений ω равна разности частот вращательных и вертикальных колебаний

$$\omega = \omega_{\rm pp} - \omega_{\rm g} \,. \tag{5.4.20}$$

Для периода биений получим

$$\tau = \frac{T_{\text{Bp}} \cdot T_{\text{B}}}{T_{\text{Bp}} - T_{\text{B}}} \,. \tag{5.4.21}$$

При смещении груза по вертикали на расстояние x, одновременно наблюдается его поворот на угол $\varphi = \beta x$, где β –малый коэффициент. То есть, при крутильных колебаниях момент возвращающей силы упругости будет равен

$$M = k_2 \varphi + k_2 \varphi_x = k_2 \varphi + k_2 \beta x, \qquad (5.4.22)$$

а уравнение крутильных колебаний в этом случае будет иметь вид

$$J\ddot{\varphi} = -k_2 \varphi - k_2 \beta x. \tag{5.4.23}$$

Аналогично при повороте груза на угол φ груз поднимется (или опустится) на высоту $x=\gamma\varphi$ (γ – малый коэффициент). Возвращающая сила при этом будет равна $k_1x+k_2\gamma\varphi$, а уравнение вертикальных колебаний примет вид

$$m\ddot{x} = -k_1 x - k_1 \gamma \varphi \,. \tag{5.4.24}$$

Если обозначить

$$\omega_{01} = \sqrt{\frac{k_1}{m}} \,, \tag{5.4.25}$$

$$\omega_{02} = \sqrt{\frac{k_2}{J}} \,. \tag{5.4.26}$$

то система уравнений (5.4.23), (5.4.24) принимает вид

$$\ddot{\varphi} + \omega_{02}^2 \varphi - \omega_{02}^2 \beta x = 0, \qquad (5.4.27)$$

$$\ddot{x} + \omega_{01}^2 x - \omega_{01}^2 \gamma \varphi = 0. \tag{5.4.28}$$

Предположим, что решением этой системы будут гармонические колебания, то есть $x=X_0\,e^{(\,i\,\omega t\,)},\,\phi=\mathcal{D}_0\,e^{(\,i\,\omega t\,)},\,$ где X_0 и \mathcal{D}_0 – комплексные амплитуды, тогда

$$-\omega^{2} X_{0} + \omega_{01}^{2} X_{0} + \omega_{01}^{2} \gamma \Phi_{0} = 0$$

$$-\omega^{2} \Phi_{0} + \omega_{02}^{2} \Phi_{0} + \omega_{02}^{2} \beta X_{0} = 0$$
, (5.4.29)

ИЛИ

$$(\omega^2 - \omega_{01}^2) X_0 = \omega_{01}^2 \gamma \, \Phi_0 (\omega^2 - \omega_{02}^2) \Phi_0 = \omega_{02}^2 \beta X_0$$
 (5.4.30)

Отсюда получаем

$$(\omega^2 - \omega_{01}^2)(\omega^2 - \omega_{02}^2) = \omega_{01}^2 \omega_{02}^2 \beta \gamma$$
 (5.4.31)

Наиболее простой вид решение этого уравнения имеет при $\omega_{01}=\omega_{02}=\omega_0$. В этом случае

$$\omega_{1,2}^2 = \omega_0^2 \left(1 \pm \sqrt{\beta \cdot \gamma} \right) \tag{5.4.32}$$

значения коэффициентов β и γ обычно малы, поэтому ω_1 и ω_2 различаются незначительно

Не изменяя массы груза, можно изменить его момент инерции, а следовательно, и частоту ω_{02} крутильных колебаний. Приближая друг к другу частоты колебаний груза можно наблюдать, как и в случае двух связанных маятников, появление биений, то есть

периодических изменений во времени амплитуды крутильных и вертикальных колебаний.

Частота биений ω равна разности собственных частот, то есть разности частот двух видов колебаний груза (крутильных ω_2 и вертикальных

$$\omega_{1,2}^2 = \omega_0^2 \left(1 \pm \sqrt{\beta \cdot \gamma}\right),$$
 (5.4.33)

$$\omega = \omega_2 - \omega_1 = \omega_0 \left(\sqrt{1 + \sqrt{\beta \cdot \gamma}} - \sqrt{1 - \sqrt{\beta \cdot \gamma}} \right) \approx \omega_0 \sqrt{\beta \cdot \gamma} \; . \tag{5.4.34}$$

Для периода биений получим

$$\tau = \frac{2\pi}{\omega} = \frac{T_0}{\sqrt{\beta \cdot \gamma}} \,. \tag{5.4.35}$$

Экспериментальная установка

Внешний вид экспериментальной установки представлен на рис.5.4.4. К верхней части рамы 1 прикреплены два датчика 2,3 и держатель 4 для исследуемых объектов. В качестве объектов используется маятники Уилберфорса с пружинами из разных материалов. Маятники Уилберфорса состоит из пружины 5 диаметром D, на конце которой подвешен составной груз (состоящий из цилиндра 6, спицы 7 и дисков 8). На верхнем конце пружины имеется крепление 9, которое позволяет подвесить маятник на держатель 4. При завершении работы необходимо составной груз подвесить на стропах 10 или полностью снять маятник с держателя 4. Датчики 2,3 соединены с многофункциональным устройством 11, которое позволяет с помощью программы PCSGU250 выводить на экран компьютера 12 сигнал с датчиков 2,3. Датчик 2 предназначен для исследования вертикальных колебаний, а датчик 3 для исследования крутильных колебаний.

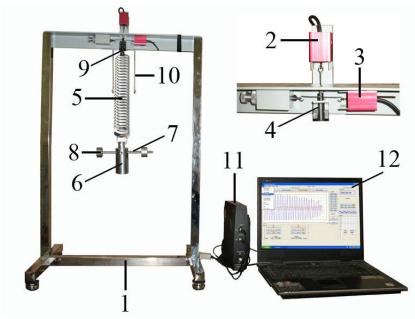


Рис. 5.4.4. Маятник Уилберфорса.

Проведение эксперимента

Упражнение 1. Определение продольной жесткости пружины.

Измерения

- 1. Записать в табл.5.4.1 значения масс составных частей m_1 , m_2 , m_3 , радиус цилиндра r_1 и длину стержня L.
- 2. Запустить программу PCSGU250 и выбрать режим *самопи*сец *l* (см. рис.5.4.5.).
- 3. Аккуратно подвесить маятник Уилберфорса со стальной пружиной. Раздвиньте диски 3 на максимальное расстояние от оси цилиндра 2. Далее осторожно, чтобы не сообщить системе других колебаний, создают небольшим опусканием груза вертикальные колебания.
- 4. Включить самописец кнопкой 2. Изображение сигнала на экране компьютера можно регулировать при помощи переключателя разверток 3 и переключателя чувствительности каналов 4 (см. рис.5.4.5.). Сигнал с первого канала отображается, синим цветом, и соответствует вертикальным колебания. Сигнал со второго канала отображается, красным цветом, и соответствует крутильным коле-

Бан Иями. Серой Вистем Вистем Вистем Ворой Ворой

Рис.5.4.4. Вид окна программы PCSGU250.

- 5. После десяти колебаний необходимо повторно нажать кнопку 2 (см. рис.5.4.5.). Измеряют время $t_{\rm Bl}$ десяти полных колебаний, для этого можно увеличить временной масштаб с помощью переключателя разверток 3 (см. рис.5.4.5.), воспользоваться инструментов измерения временных интервалов, или сохранить экспериментальные данные в файл на компьютере.
- 6. Определить период колебаний $T_{\text{в1}} = \frac{t_{\text{в1}}}{10}$, результат записать в табл.5.4.1.
- 7. Провести измерения по пп. 4,5 несколько раз. Результаты измерений периодов колебаний внести в табл.5.4.1.
- 8. Повторить пп. 3-7 для маятника Уилберфорса с пружиной, сделанной из сплава бронзы. Результаты измерений периодов колебаний внести в табл.5.4.1. Поскольку параметры маятников и пружин отличаются, то лучше табл.5.4.1 сделать для каждого маятника отдельную таблицу.

1

Таблица 5.4.1 Экспериментальные данные упражнения 1

Обработка результатов

- 1. Рассчитать по формуле (5.4.2) полную массу m составного маятника. Результат внести в табл.5.4.1.
- 2. Используя экспериментальные данные (табл.5.4.1) рассчитать среднее значение периода вертикальных колебаний $\langle T_{\scriptscriptstyle \rm B} \rangle$ по формуле

$$\langle T_{\scriptscriptstyle \rm B} \rangle = \frac{1}{n} \sum_{\scriptscriptstyle i} T_{\scriptscriptstyle \rm Bi} \; ,$$

где *п*-число измерений.

3. Рассчитать среднеквадратичную погрешность измерения периода продольных колебаний σ_T по формуле

$$\sigma_{T} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} \left(T_{\text{Bi}} - \langle T_{\text{B}} \rangle\right)^{2}} .$$

- 4. Рассчитать продольную жесткость пружины k_1 по формуле (5.4.7). Результаты внести в табл.5.4.1.
- 5. Рассчитать погрешность определения продольной жесткости пружины по формуле

$$\Delta k_1 = k_1 \sqrt{\left(\frac{\Delta m}{m}\right)^2 + \left(\frac{\sigma_{\langle T_{\rm B} \rangle}}{\left\langle T_{\rm B} \right\rangle}\right)^2} \ .$$

6. Результаты вычисления занести в табл.5.4.1.

Упражнение 2. Определение крутильной жесткости пружины и момента инерции маятника.

Измерения

- 1. Измерьте и запишите положение l_1 дисков * .
- 2. Осторожно, чтобы не сообщить других колебаний, небольшим поворотом груза составного вокруг вертикальной оси создать крутильные колебания.
- 3. Измерить 10 крутильных колебаний $t_{\rm вp1}$ таким же способом как это было сделано в ynp.1.
- 4. Вычислить период крутильных колебаний $T_{\text{вр1}} = \frac{t_{\text{вр1}}}{10}$. Результат вычисления занести в табл.5.4.2.
- 5. Провести аналогичные пп. 3,4 измерения $T_{\rm врi}$ для других положений дисков $l_{\rm i}$, каждый раз смещая $\partial u c \kappa u$ 3 на 1см. Занести значения $l_{\rm i}$ и $T_{\rm врi}$ в табл.5.4.2.
- 6. Провести измерения по пп. 1,5 для маятника Уилберфорса с пружиной, сделанной из сплава бронзы. Результаты измерений периодов колебаний внести в табл.5.4.2.

Таблица 5.4.2.

Экспериментальные данные упражнения 2

			- 1				- J p -				
$l_{\rm i}$	$T_{ m Bpi}$	l_i^2	$T_{\scriptscriptstyle \mathrm{Bpi}}^{2}$	α	$\sigma_{\scriptscriptstyle lpha}$	b	$\sigma_{\scriptscriptstyle b}$	k_2	Δk_2	J_0	ΔJ_0

Обработка результатов

1. Рассчитать значения l_i^2 и $T_{\text{вр}}^2$ и погрешности определения этих величин. Внести данные в табл.5.4.2.

_

^{*} Отчет необходимо вести от середины диска С.

- 2. Нанести значения экспериментальных точек и погрешности измерений на координатную плоскость $T_{\rm BD}^2$ от l^2 .
- 3. Построить график зависимости $T_{\text{вр}}^2(l^2)$ проведя прямую линию.
- 4. Из графика экспериментальной зависимости $T_{\rm вp}^2\left(l^2\right)$ методом наименьших квадратов определить α и b. Зависимость имеет следующий вид $T^2=4\pi^2\frac{J_0}{k_2}+4\pi^2\frac{2m_3l^2}{k_2}$, а $\alpha=4\pi^2\frac{2m_3}{k_2}$, $b=4\pi^2\frac{J_0}{k_2}$.
- 5. Рассчитать среднеквадратичные погрешности $\sigma_{\scriptscriptstyle \alpha}$ и $\sigma_{\scriptscriptstyle b}$ по формулам

$$\sigma_{\alpha} = \sqrt{\frac{1}{(n-2)} \left[\frac{n \sum_{i} T_{i}^{4} - \left(\sum_{i} T_{i}^{2}\right)^{2}}{n \sum_{i} l_{i}^{4} - \left(\sum_{i} l_{i}^{2}\right)^{2}} - \alpha^{2} \right]},$$

$$\sigma_{b} = \sigma_{\alpha} \sqrt{\frac{1}{n} \sum_{i} l_{i}^{4}},$$

где *п*-количество измерений.

- 6. Рассчитать значения $k_2 = 4\pi^2 \frac{2m_3}{\alpha}$ и $J_0 = \frac{bk_2}{4\pi^2}$. Результаты вычислений внести в табл.5.4.2.
 - 7. Рассчитать погрешности измерения k_2 и J_0 по формулам

$$\Delta k_2 = k_2 \sqrt{\left(\frac{\Delta \alpha}{\alpha}\right)^2 + \left(\frac{\Delta m_3}{m_3}\right)^2},$$

$$\Delta J_0 = J_0 \sqrt{\left(\frac{\Delta b}{b}\right)^2 + \left(\frac{\Delta k_2}{k_2}\right)^2}.$$

Записать полученные результаты в табл.5.4.2.

8. Из параметров составного груза вычислить момент инерции цилиндра A со стержнем B по формуле (5.4.17). Сравнить с результатами вычислений, полученными в п.6.

Упражнение 3. Определение коэффициента Пуассона.

Измерения

Для определения коэффициента Пуассона используются результаты измерений, проведенных в $\mathit{Vnp.1}$ и $\mathit{Vnp.2}$.

Обработка результатов

1. Используя значения k_1 и k_2 , полученные в $\mathit{Vnp.1}$ и $\mathit{Vnp.2}$ по формуле (5.4.19) вычислить коэффициент Пуассона μ для стали и сплава бронзы. Сравните полученные значения с табличными из справочника.

$Упражнение 4. \ Установление зависимости периода биений <math> au$ от l.

Измерения

Для установления зависимости периода биений τ от l используются результаты измерений, проведенных в $\mathit{Vnp.1}$ и $\mathit{Vnp.2}$. Из $\mathit{Vnp.1}$ (табл. 5.4.1) берется значение периода вертикальных колебаний $\langle T_{_{\rm B}} \rangle$ (его среднее значения), а из $\mathit{Vnp.2}$ берутся значения $l_{\rm i}$ и $T_{\rm Bpi}$ (1 и 2 столбец табл.5.4.2).

Обработка результатов

1. Запишите значение периода вертикальных колебаний $\langle T_{\scriptscriptstyle \rm B} \rangle$ (период вертикальных колебаний при изменении длины $l_{\rm i}$ не изменяется) в табл.5.4.4.

Таблица 5.4.4. Экспериментальные ланные упражнения 4

Siteriopinion i militario di minimo										
N	$\langle T_{_{\mathrm{B}}} \rangle$	$l_{\rm i}$	$T_{ m Bpi}$.	$\tau_{\rm i}$	$\sigma_{_{ au_i}}$					
1										
2										
3										
4										
5										

2. Для каждого значения $l_{\rm i}$ запишите в табл.5.4.4 значение периода вращательных колебаний $T_{\rm spi}$.

Для каждого значения $l_{\rm i}$ и $T_{\rm врi}$ по формуле (5.4.26) вычислите значения периода биений $\tau_{\rm i}$ и среднеквадратичные отклонения σ_{τ_i} этих величин. Результаты вычислений записать в табл.5.4.4.

- 3. Построить график зависимости $\tau(l)$. По графику определить такое положение дисков C, при котором период биений будет максимальным.
- 4. Построить график зависимости $\omega_{\rm 6}=f\left(\omega_{\rm вp}\right)$, где $\omega_{\rm 6}$ частота биений $\left(\omega_{\rm 6}=\frac{2\pi}{\tau}\right)$. Проанализировать линейный характер этой зависимости (согласно (5.4.25).

Упражнение 5. Наблюдение биений.

- 1. Перемещением груза на стержнях дисков С, изменяют его момент инерции и добиваются равенства периода вертикальных и крутильных колебаний.
- 2. Не изменяя момента инерции груза, осторожно создают вертикальные не очень малые колебания. Период биений т определяют, измеряя время между двумя последовательными остановками груза при его крутильных колебаниях. Измерения повторяют не менее трех раз.

Основные итоги работы

В процессе выполнения работы должны быть измерены периоды вертикальных и крутильных колебаний пружинного маятника. Определен коэффициент Пуассона для материала пружины (сталь). Установлена зависимость периода биений τ от l.

Контрольные вопросы

- 1. Виды деформаций. Их характеристики. Закон Гука. Модуль Юнга. Модуль сдвига.
- 2. Системы со многими степенями свободы. Нормальные частоты. Биения.
 - 3. Коэффициент Пуассона.
- 4. Связь между модулем сдвига, модулем Юнга и коэффициентом Пуассона.
- 5. Механизмы возникновения крутильных и вертикальных колебаний пружинного маятника.
- 6. От каких параметров системы зависят периоды вертикальных и крутильных колебаний груза на пружине.

- 7. По какой причине период вертикальных колебаний не изменяется при смещении дисков С составного груза.
- 8. Каким образом определяется крутильная жесткость пружины.
 - 9. Причина появления биений в пружинном маятнике.