ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В.ЛОМОНОСОВА»

ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ

КАФЕДРА ОБЩЕЙ ФИЗИКИ

МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ

«ИССЛЕДОВАНИЕ ПАРАМЕТРОВ ДВУМЕРНОГО ЭЛЕКТРОННОГО ГАЗА В КВАНТОВЫХ ЯМАХ InGaN/GaN МЕТОДОМ ТЕРАГЕРЦОВОЙ СПЕКТРОСКОПИИ С ВРЕМЕННЫМ РАЗРЕШЕНИЕМ»

Выполнил студент

205М группы

Бурмистров Евгений Романович

Научный руководитель

д.ф.-м.н., профессор

Авакянц Лев Павлович

Допущена к защите _____

Зав. кафедрой д.ф.-м.н. проф. Салецкий А.М.

Москва 2022 год

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ
ГЛАВА 1. МЕТОДИКА ЭКСПЕРИМЕНТА И ИССЛЕДУЕМЫЕ ОБРАЗЦЫ 8
1.1 Экспериментальные образцы гетероструктур с тремя и пятью КЯ
In _x Ga _{1-x} N/GaN
1.2 Методика эксперимента 12
ГЛАВА 2. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ 19
2.1 Результаты эксперимента для образцов гетероструктур с пятью КЯ
In _x Ga _{1-x} N/GaN
2.2 Результаты эксперимента для образцов гетероструктур с тремя КЯ
$In_xGa_{1-x}N/GaN$
2.3 Аналитическое исследование механизма пьезоэлектрической релаксации
2ДЭГ в гетероструктурах с пятью КЯ In _x Ga _{1-x} N/GaN
2.4 Сравнение результатов для образцов гетероструктур с пятью и тремя КЯ
In _x Ga _{1-x} N/GaN
ПОЛУЧЕННЫЕ В РАБОТЕ РЕЗУЛЬТАТЫ
ЗАКЛЮЧЕНИЕ
БЛАГОДАРНОСТИ
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

ВВЕДЕНИЕ

Цель. Основной целью работы является определение времени релаксации, подвижности и эффективной массы двумерного электронного газа (2ДЭГ) во множественных квантовых ямах (МКЯ) In_xGa_{1-x}N/GaN методом терагерцовой спектроскопии с временным разрешением (THz-TDs). Для этого нами регистрировались резонансные частоты 2Д плазмонных осцилляций, возбуждаемые в образцах гетероструктур с МКЯ In_xGa_{1-x}N/GaN лазерными импульсами длительностью 130 фс в диапазоне температур от 90 до 170К. Для достижения поставленных целей были определены следующие задачи:

- 1. Разработать схему и создать экспериментальную установку для возбуждения плазмонных осцилляций и регистрации их резонансных частот методом THz-TDs.
- Предложить алгоритм математической обработки ТГц спектров эмиссии, с помощью которого можно получить значения времени релаксации импульса, подвижности и эффективной массы 2ДЭГ.
- Теоретически изучить параметры, характеризующие релаксационные процессы 2ДЭГ в гетероструктурах с пятью КЯ в условиях встроенных пьезоэлектрических полей.

Объекты исследований. Объектами исследований являются образцы гетероструктур InGaN/AlGaN/GaN с тремя и пятью KЯ In_xGa_{1-x}N/GaN в активной области, широко применяемые в настоящее время в светодиодах синего и зеленого диапазона излучения. Такого типа образцы широко используются в современной полупроводниковой электронике в CBЧдетекторах, сверхъярких и лазерных диодах [1, 2]. Гетероструктуры InGaN/AlGaN/GaN наиболее часто применяются в составе активной среды в мощных квантово – каскадных лазерах и светодиодах синего и зеленого диапазона излучения [3, 4].

Полупроводники на основе нитрида галлия (GaN) обладают широкой ($E_g = 3.4$ эВ) запрещённой зоной, величину которой можно контролировать, изменяя концентрацию In в тройном соединении In_xGa_{1-x}N. Большая (0.42эВ) величина разрыва зоны проводимости в сочетании с эффектом пьезолегирования на гетерогранице InGaN/GaN позволили использовать гетероструктуры InGaN/AlGaN/GaN в составе чувствительных детекторов терагерцового (ТГц) диапазона излучения [5].

Абсолютный рекорд подвижности 2ДЭГ при температуре 0.5К (см., например, [6]) был получен для эпитаксиальных композитов InGaN/AlGaN/GaN и составил 100000 см²/В · с. За последние годы в гетероструктурах InGaN/AlGaN/GaN при комнатных температурах были достигнуты следующие значения:

1. скорости дрейфа насыщения ~10⁸ см/с [3];

2. температуры износа *T* >1000° С [5];

- 3. концентрации двумерного электронного газа (2ДЭГ) ~ 10^{13} см⁻² [6];
- 4. величины напряженности поля пробоя $E \sim 4.5$ MB/см [4].

Актуальность исследований. Выходная мощность и эффективность излучения приборов микро – и оптоэлектроники на основе гетероструктур InGaN/AlGaN/GaN определяются подвижностью 2ДЭГ в одиночных КЯ или во МКЯ In_xGa_{1-x}N/GaN. На частоту излучательной рекомбинации двумерных активной области $In_xGa_{1-x}N$ носителей В могут оказывать влияние несимметричный потенциальный рельеф и неравномерное распределение электронной плотности вдоль активной области гетероструктуры [7]. В серийном устройств с МКЯ производстве готовых светодиодных $In_xGa_{1-x}N/GaN$ используется рост вдоль полярного направления [0001] гексагонального GaN [7]. Вследствие пьезоэлектрической и спонтанной поляризаций на гетерогранице InGaN/GaN формируются встроенные пьезоэлектрические поля порядка единиц МВ/см, что приводит к возникновению эффекта Штарка, то есть к сдвигу энергетических уровней размерного квантования в зоне проводимости. В результате ширина запрещенной зоны увеличивается и снижается доля

излучательной рекомбинации [8].

Встроенные механические тангенциальные напряжения в слоях InGaN и GaN приводят к искажению потенциального рельефа в активной области и к неоднородному пространственному распределению двумерных носителей заряда. Следовательно, уменьшается интеграл перекрытия волновых функций и лоля безызлучательной рекомбинации, возрастает которая ухудшает интегральную яркость свечения светодиодов и квантово-каскадных лазеров в средней и дальней ИК области. При моделировании динамики 2ДЭГ стоит учитывать, что пьезоэлектрические поля не являются самостоятельными источниками рассеяния двумерных носителей, так как тесно связаны с узлами кристаллической решетки GaN и имеют периодическое пространственное распределение. Однако, в совокупности с дефектами и шероховатостями на $In_xGa_{1-x}N/GaN$ гетерогранице пьезоэлектрические поля ограничивают подвижность 2ДЭГ [8].

Существующие в КЯ $In_xGa_{1-x}N/GaN$ механизмы рассеяния также приводят к снижению подвижности и времени релаксации 2ДЭГ. При комнатных температурах доминирующим каналом релаксации является рассеяние на оптических фононах [9]. В области низких температур чаще всего выделяют: рассеяние на шероховатостях гетероструктуры, на атомах примеси и электронэлектронное рассеяние [10, 11, 12, 13].

серийном производстве промышленных LED при изготовлении B гетероструктур InGaN/AlGaN/GaN используется метод газофазной эпитаксии. Следовательно, качество формируемой гетерограницы оказывает значительное влияние на динамику 2ДЭГ в МКЯ In_xGa_{1-x}N/GaN [10]. Дефекты, возникающие в процессе серийного формирования гетероструктур и возможное рассогласование постоянных кристаллических решеток КЯ (InGaN) и барьера (GaN) приводят к появлению на гетерогранице локальных неоднородностей толщиной в несколько моноатомных слоев GaN, которые необходимо учитывать при исследовании и моделировании температурных зависимостей подвижности И времени релаксации 2ДЭГ [14, 15].

Методология и методы исследований. Метод THz-TDs основан на временной зависимости электрического регистрации поля ΤГц сигнала, соответствующего отклику электронной системы В ответ на внешнее фемтосекундное возмущение [16]. Он оказался эффективным методом для исследований систем при низких (5-10К) температурах и с низкой (10¹¹-10¹³см⁻³) электронной плотностью, таких, например, как плазма разряда гелия (Не) [17, 18]. В работах [19, 20] метод THz-TDs использован для изучения проводимости, подвижности и плотности носителей заряда в поликристаллах CuInSe₂ и в полупроводниковых соединениях Ge₂Sb₂Te₅ при 7К. В сочетании с теорией функционала плотности THz-TDs используется для изучения проводящих свойств топологических изоляторов и сверхпроводников [21]. Таким образом, THz-TDs дополняет широко используемые ИК-спектроскопии, методы комбинационного рассеяния и расширяет исследуемый диапазон частот.

Метод THz-TDs работает В пикосекундных масштабах времени. Следовательно, он подходит лля исследования времени жизни фотовозбужденных носителей заряда в полупроводниках [18], если учесть, что фотовозбуждение, как правило, приводит к субпикосекундным временам жизни носителей заряда в гетероструктурах [22]. В сочетании с фотовозбуждением метод THz-TDs был использован для определения типа проводимости, диффузионной длины электронов и дырок и динамики излучательной рекомбинации в гетероструктурах [23, 24, 25].

Преимущества метода THz-TDs в исследовании полупроводниковых систем заключаются в том, что данные в TГц диапазоне содержат информацию о характерных особенностях динамики 2ДЭГ. Такими характерными особенностями в случае гетероструктур InGaN/AlGaN/GaN могут быть:

- 1. Подвижность и время релаксации импульса 2ДЭГ пикосекундной длительности в ответ на внешнее фемтосекундное возмущение.
- 2. Проводимость, а также кинетика 2ДЭГ в условиях действующих встроенных пьезоэлектрических полей, расположенных вдоль гетерограницы.

Личный вклад автора. Описанная в диссертации экспериментальная установка по регистрации частот 2Д плазмонных резонансов была собрана автором лично. А также автором были получены экспериментальные результаты, проведён их анализ и обработка, сформулированы выводы, подготовлены публикации и выступления на конференциях.

Достоверность результатов обеспечена совпадением теоретически полученных значений параметров 2ДЭГ с экспериментальными данными и подтверждается результатами апробации работы.

Структура работы. Диссертация состоит из введения, двух глав, выводов, заключения, благодарностей и списка литературы. Общий объём составляет 54 страниц, в том числе 14 рисунков и 15 таблиц. Библиография содержит 42 наименования.

Работа выполнена в лаборатории оптической спектроскопии материалов опто-и микроэлектроники Физического факультета МГУ имени М.В. Ломоносова, а также в институте лазерных и плазменных технологий НИЯУ МИФИ.

Исследования, представленные в диссертации, были поддержаны Фондом развития теоретической физики и математики «Базис».

ГЛАВА 1. МЕТОДИКА ЭКСПЕРИМЕНТА И ИССЛЕДУЕМЫЕ ОБРАЗЦЫ

 1.1 Экспериментальные образцы гетероструктур с тремя и пятью КЯ In_xGa_{1-x}N/GaN

Объектом исследования является типичная для светодиодных $In_xGa_{1-x}N/GaN$ гетероструктур С квантовыми ямами слоевая структура. Исследовались готовые образцы промышленных гетероструктур InGaN/AlGaN/GaN, изученные ранее в работе [26] методами модуляционной спектроскопии. Возбуждение плазмонных волн и регистрация их резонансных частот проводились нами для двух (№СО1 и №П1) образцов с пятью КЯ и одного (№0112) образца с тремя КЯ In_xGa_{1-x}N/GaN производителей ЗАО НПЦ «Полюс» [26]. Типичная слоевая структура образцов представлена на рисунке 1.

Рисунок 1. Слоевая структура полупроводника InGaN/AlGaN/GaN с пятью а) и тремя б) КЯ In_xGa_{1-x}N/GaN

Видно (рисунок 1a), что для гетероструктур InGaN/AlGaN/GaN с пятью КЯ первыми являются низкотемпературный и буферный слои нелегированного i-GaN с толщинами 20 нм и 0,7 нм соответственно, выращенные методом газофазной эпитаксии (ГФЭ) на сапфировой подложке (толщина 10 мкм) в направлении [0001]. Далее, следует слой n-GaN, легированный кремнием с концентрацией доноров $N_D = 5 \cdot 10^{18}$ см⁻³ толщиной 3,6 мкм и 4,5 мкм для образцов ЗАО НПЦ «Полюс». Для улучшения структурного качества буфером служит сглаживающая сверхрешётка InGaN/GaN, которая способствует увеличению оптической мощности излучения промышленных светодиодов за счет уменьшения аксиальных механических напряжений в слое InGaN. Активная область состоит из 5 квантовых ям/квантовых барьеров (КЯ/КБ) In_xGa_{1-x}N/GaN толщинами 3/12 нм и 4/4 нм с концентрацией индия x = 0.24 и х = 0.22 для образцов №СО1 и №П1 соответственно. Далее следует слой р-AlGaN (толщина 20 нм), легированный магнием, с концентрацией акцепторов $N_{A} = 2 \cdot 10^{19}$ см⁻³ и слой p-GaN (толщина 120 нм). Основные параметры исследуемых образцов представлены в таблице 1.

Серия образцов	N	КЯ/КБ, нм	<i>S</i> , мм ²	X_{In}	$E_{_g},$ эВ
№CO1	5	3/12	0.4	0.24	2.6
Nº∏1	5	4/4	0.4	0.22	2.6
		-			

Таблица 1. Параметры образцов гетероструктур с пятью КЯ/КБ In_xGa_{1-x}N/GaN

В таблице 1 приняты обозначения: *N*-число КЯ, *S*-площадь поверхности кристалла.

Для гетероструктур с тремя КЯ $In_xGa_{1-x}N/GaN$ (рисунок 1б) первыми являются подложка Al_2O_3 площадью 0.4 мм² толщиной 430 мкм и затравочный низкотемпературный слой GaN толщиной 5 мкм. Далее следует буферная сглаживающая сверхрешётка InGaN/GaN (20 периодов КЯ/КБ с толщинами 2/2 нм). Активная область гетероструктуры состоит из 3 КЯ/КБ $In_xGa_{1-x}N/GaN$ с толщинами 2.5/15 нм, после которого следуют слои AlGaN и GaN с толщинами 20 нм и 110 нм [16, 17]. Основные параметры исследуемого образца

представлены в таблице 2.

Название образца	Ν	КЯ/КБ, нм	AlGaN	<i>S</i> , мм ²	\mathcal{X}_{In}	<i>Е_g</i> , эВ
0112	3	2.5/15	Есть	0.4	0.22	2.6
-		A H	~			

Таблица 2. Параметры образца гетероструктуры с тремя КЯ/КБ In_xGa_{1-x}N/GaN

Для каждого образца рассчитывалась ширина запрещенной зоны тройного соединения $In_xGa_{1-x}N/GaN$ с помощью эмпирического выражения [27, 28]: $E_g = 0.675x + 3.44(1-x) - 1.3(1-x)x$. Подстановка значений концентрации индия x = 0.24, x = 0.22 приводит соответственно к ширине запрещенной зоны сплава $In_xGa_{1-x}N/GaN$ $E_g = 2.5$ эВ и $E_g = 2.6$ эВ (таблица 1, 2).

В КЯ $In_xGa_{1-x}N/GaN$, учитывая ее узость, реализуется только один энергетический уровень E_1 . Значения квантово-размерных энергетических уровней для всех 5 КЯ получены ранее авторами работы [26, 27] в ходе интерпретации спектров электропропускания, снятых с образцов гетероструктур InGaN/AlGaN/GaN при разных обратных смещениях p-n-перехода (таблица 3). Из данных таблицы 3 видно, что уровни испытывают смещение вдоль активного слоя. Это обусловлено влиянием пьезоэлектрических полей, расположенных на гетерогранице вследствие внутренних тангенциальных механических напряжений в слоях гексагональной сингонии материала GaN [29].

Серия образцов				№КЯ		
		1	2	3	4	5
№CO1	$E_1, \Im \mathbf{B}$	2.74	2.88	2.88	2.88	2.74
№ П1	<i>E</i> ₁ ,эВ	2.81	2.92	2.92	2.92	2.81

Таблица 3. Значения энергии квантово – размерного энергетического уровня,

реализуемого в образцах с пятью КЯ $In_xGa_{1-x}N/GaN$

Полоса пропускания ТГц импульсов определяется толщиной образца и терагерцовым поглощением в эпитаксиальных слоях композитных гетероструктур. Максимальное значение выходной мощности ТГц излучения среди образцов с пятью КЯ составило 6мкВт (образец №СО1). Значение выходной мощности ТГц излучения образца №0112 составило 3мкВт.

Следовательно, исследуемые образцы соответствуют области прозрачности ТГц излучения, а конверсия мощности фемтосекундного лазера в мощность ТГц-излучения составляет 0.01 % и 0.005% соответственно.

В серийном производстве гетероструктур используется рост ВДОЛЬ гексагонального полярного направления [0001] GaN. В результате пьезоэлектрической и спонтанной поляризаций в квантовых ямах In_xGa_{1-x}N/GaN появляются встроенные электрические поля порядка единиц МВ/см, приводящие эффекту Штарка. Влияние неравномерного распределения встроенного К пьезоэлектрического поля сводится к сдвигу максимума в спектрах фото- и электролюминесценции при возбуждении разных участков поверхности кристалла. Видно, (рисунок 2а), что при удалении области возбуждения фотолюминесценции светом с длиной волны 405нм от центра кристалла максимум интенсивности излучения испытывает красное смещение. Подобная закономерность наблюдается в спектрах электролюминесценции (рисунок 26)

Рисунок 2. а) Спектр фотолюминесценции. Зеленый максимум соответствует расстоянию от центра кристалла 5 мм, синий - 10мм, красный – 15 мм, фиолетовый – 20 мм; б) Спектр электролюминесценции. Синий максимум соответствует расстоянию от центра кристалла 3 мм, голубой – 5 мм, оранжевый – 8мм.

1.2 Методика эксперимента

Нами предложена методика регистрации частотных спектров мощности и разности фаз ТГц излучения. На основании значений частот 2Д плазмонных резонансов, соответствующих минимумам в спектрах мощности, определялась эффективная масса 2ДЭГ и время релаксации импульса исходя из уравнения дисперсии стробируемых 2Д плазмонов. На рисунке 3 представлена схема экспериментальной установки для регистрации спектров эмиссии ТГц излучения.

Рисунок 3. Схема установки для регистрации частот плазмонных резонансов в гетероструктуре InGaN/AlGaN/GaN.

Регистрация спектров эмиссии ТГц излучения проводилась в геометрии на прохождение в диапазоне температур от 90К до 170К с шагом 30К (рисунок 3). Выше 170К особенности плазмонного резонанса в эксперименте не наблюдались. Источником излучения является Ті: сапфировый лазер с временным окном импульсов $t_1 = 130 \phi c$ или $t_2 = 135 \phi c$ на длине волны 800 нм. Частота следования импульсов фемтосекундного лазера составила 60МГц со средней выходной мощностью излучения 57 мВт. Излучение Ті: сапфирового лазера диаметром пучка 1,8 мм делится на два луча (рисунок 3). Первый из них направлен на генерацию плазмонных осцилляций в системе 2ДЭГ. Второй проходит при нормальном угле падения через оптическую систему задержки и используется управления ТГц-детектором, чувствительным ДЛЯ К

электрическому полю ТГц импульсов. Предварительно производилась юстировка оптического и ТГц путей излучения. Для выделения зондирующего импульса фемтосекундный лазерный пучок делится зеркалом 4 и направляется через оптическую систему задержки с настраиваемой длиной пути следования импульсов. Система задержки состоит из зеркал 9, 8 с регулируемым расстоянием между ними.

было Выделение зондирующего импульса проведено В целях стробирования детектора, чувствительного к электрическому полю ТГц импульсов. Стробирование детектора ТГц импульсов во временной области осуществлялось за счет изменения расстояния между зеркалами 9 и 8. Это позволило согласовать время прихода оптического импульса относительно ТГц и провести детектирование всего его временного профиля. На выходе из образца ТГц импульсы являются сильно расходящимися. Поэтому они фокусировались кремниевой линзой 2, зеркалом 5 и регистрировались ТГц детектором. ТГц излучение детектировалось фотопроводящей (ФП) антенной. Она состоит двух металлических электродов, расположенных ИЗ на полупроводниковой изолирующей подложке с рабочей поверхностью 30 × 40 мкм из низкотемпературного GaAs толщиной 3 мкм, выращенной методом ГФЭ 300[°]С. Электроды, при температуре между которыми имелся зазор, Электрический подключались к измерителю тока. ток *J* создавался фотовозбужденными носителями заряда, движущимися в электрическом поле ТГц импульсов $J = \langle N \rangle e \mu E(\tau)$, где $\langle N \rangle$ – среднее значение концентрации фотовозбужденных носителей, τ – время задержки прихода референса относительно ТГц импульса. Фототок пропорционален амплитуде ТГц электрического поля. Электрическое поле между электродами в разные промежутки измерялось с помощью референса, длительность которого намного меньше ТГц сигнала. Для этого регулировалось время прихода референса на ФП антенну, что позволило провести измерения в нужные моменты времени. Регистрация временной формы ТГц импульса осуществлялась путем времени задержки т. Преобразование Фурье сканирования позволило

восстановить зависимость амплитуды регистрируемого сигнала от частоты. Визуализация спектров эмиссии ТГц излучения и их обработка производились с помощью персонального компьютера.

Пусть электрическое поле фемтосекундного импульса длительностью τ описывается функцией $E_{opt}(t)$, а его интенсивность функцией $I_{opt}(t)$ (рисунок 4).

Рисунок 4. Схема, поясняющая нелинейный оптический эффект второго порядка, соответствующий плазмонным осцилляциям, возбуждаемым в КЯ In_xGa_{1-x}N/GaN. Показана временная шкала, указывающая направление распространения оптического и ТГц импульсов.

Пусть нелинейной функцией отклика среды, характеризующей модуляцию монохроматического излучения, проходящего через образец толщиной h, является G(t). Тогда сигнал на детекторе N(t') можно представить в виде свертки двух функций, одна из которых, $K_{_{THz}}(t)$, соответствует электрическому полю ТГц излучения

$$N(t') = I_{out}(t) \otimes K_{TH_2}(t').$$
⁽¹⁾

Учитывая модуляцию временного профиля ТГц импульсов вследствие прохождения через образец, характеризующегося нелинейной функции передачи G(t), в уравнении (1) связь электрического поля ТГц излучения с функцией электрического поля лазерного излучения должна быть записана в следующем интегральном виде

$$K_{TH_{z}}(t) = \int_{-\infty}^{+\infty} G(t-t') E_{opt}(t') dt'.$$
 (2)

С использованием метода быстрого преобразования Фурье, можно осуществить переход из временного представления соответствующих величин в частотное. В данном случае свертка функций представляется в виде произведения Фурье образов

$$K_{TH_2}(\omega) = G(\omega)E_{out}(\omega).$$
(3)

В уравнении (3) функция $G(\omega)$ является комплексно значащей функцией передачи модуляции, которая отвечает за изменение амплитуды и фазы электрического поля ТГц излучения, прошедшего через плоскопараллельные слои гетероструктуры. Физическим смыслом, отвечающим модуляции монохроматического излучения, обладает Re[$G(\omega)$].

Электрическое поле монохроматического излучения лазера испытывает поглощение в среде. Следовательно, его амплитуда уменьшается, а фаза претерпевает изменение из-за дисперсии среды. В методе THz-TDs результирующий спектр является наложением Фурье образов TГц спектра эмиссии с образца и слабого оптического референса:

$$G(\omega) = \frac{\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} K_{TH_z}(t) \exp(-i\omega t) dt}{\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} E_{opt}(t) \exp(-i\omega t) dt} = \frac{K_{TH_z}(\omega)}{E_{opt}(\omega)}.$$
(4)

Если выходное ТГц излучение испытывает сдвиг во времени на величину Δt , это приводит к сдвигу его фазы, которое может быть учтено следующим образом

$$K_{TH_z}(\omega)\exp(-i\omega\Delta t) = \int_{-\infty}^{+\infty} K_{TH_z}(t-\Delta t)\exp(-i\omega t)dt.$$
 (5)

Как уже говорилось, длительность оптического импульса (референса)

намного меньше ТГц. Следовательно, функцию $I_{opt}(t)$ можно аппроксимировать с помощью дельта-функции $\delta(t)$. Уравнение (1) приобретает вид

$$N(t') = I_{out}(t) \otimes K_{TH_2}(t') \approx \delta(t) \otimes K_{TH_2}(t') = K_{TH_2}(t').$$
(6)

Последнее выражение означает, что результирующий сигнал детектируется только при условии, если референс приходит на детектор одновременно с терагерцовым сигналом. Следовательно, одним из преимуществ THz-TDs в отличие от многих других методов является то, что с ее помощью можно измерять фазовый сдвиг и электрическое поле ТГц импульса как функцию времени.

В ходе эксперимента исследуются опорный $E_{off}(t)$ и модулированный $E_{or}(t)$ сигналы, пропускаемые через пустой криостат и криостат с образцом, соответственно. В схеме детектирования опорного сигнала пучок от лазера также делится на два луча. Один из них направлен на генерацию ТГц излучения, управления ТГц детектором (референс). Для a другой служит для детектирования опорного сигнала использовались две ФП антенны, одна из которых применялась в качестве ТГц детектора (ФП1), а другая (ФП2) преобразования размещалась вместо криостата И использовалась ДЛЯ фемтосекундных импульсов в терагерцовые. Электроды антенны ФП2 были подключены к источнику питания. После того как ТГц импульсы были сгенерированы, они поступали на антенну ФП1. С помощью референса, время регулировалось оптической системой прихода которого задержки, регистрировалась временная форма опорного сигнала.

Регистрация модулированного сигнала осуществляется в соответствии со схемой, изображенной на рис. 3. Быстрое Фурье преобразование (БПФ) модулированного сигнала выполнено для получения Фурье – компонент опорного и модулированного сигналов в частотной области. Это дало возможность выявить составляющие частоты ТГц импульсов [30]:

$$E_{off,on}(f) = \left| E_{off,on}(f) \right| \exp(i\varphi_{off,on}(f)).$$
(7)

Имея в распоряжении набор составляющих частот, проводился их анализ и сравнение на предмет обнаружения спектральных неоднородностей в отдельных гармониках составляющих частот. БФП сигнала $E_{on}(t)$ позволило выявить соответствующие 2Д минимумы, частотам плазмонных резонансов. Моделирование сигналов $E_{on}(t)$ и $E_{off}(t)$ дало возможность получить частотные и температурные зависимости спектральной мощности и фазового сдвига. С этой аппроксимация экспериментальных графиков, целью проводилась соответствующих $E_{_{on}}(t)$ и $E_{_{off}}(t)$. Далее применялась процедура БФП для получения Фурье амплитуд.

Для характеристики ТГц спектров эмиссии определялись такие параметры, как спектральная мощность $P_i(f) = |E_{on}(f)|^2 / |E_{off}(f)|^2$ и фазовый сдвиг $\Phi_i(f) = \varphi_{on}(f) - \varphi_{off}(f)$. Методом разворачивания фазы определялась полная фаза $\Phi_i(f)$, соответствующая числу периодов, укладывающихся в пределах разности хода длин волн падающего и прошедшего через криостат с образцом сигналов. Для этого к каждому значению фазы в пределах первого периода прибавлялся множитель 2π . Заранее учитывалось, что скачки фазы отсутствуют в точках перехода через период. Значение разности хода длин волн было установлено в ходе эксперимента.

График $E_{on}(f)$ имеет кусочно-непрерывный вид (будет видно далее). Для сглаживания и моделирования его формы проводилось разложение в ряд Фурье с вычисленными по формуле (7) Фурье – компонентами опорного сигнала $E_{off}(f)$ и с комплексной функцией передачи F(f)

$$E_{sim}(f) = F(0)E_{off}(0) + \sum_{k} F(f_{k})E_{off}(f_{k})\exp(2\pi i f_{k}t),$$
(8)

где $F(f_k)$ была найдена путем решения уравнений Максвелла в гидродинамической модели высокочастотных свойств 2ДЭГ как отклик среды на

плоскую волну с частотой f, $f_k = k/\Delta t$, k = 1, 2... и Δt – временное окно импульса. В общем случае, функция $F(f_k)$ зависит от диэлектрического окружения 2ДЭГ. В процессе нахождения $F(f_k)$ барьерный слой GaN и подложка моделировались как два разных слоя с комплексными диэлектрическими проницаемостями ε_d и ε_s . В выражениях для ε_d и ε_s учитывались компоненты Im[ε_d] и Im[ε_s], которые характеризуют иные виды потерь энергии сигнала в плоскопараллельных слоях гетероструктуры.

Для рассматриваемых плазмонных структур резонансные частоты оценивались из закона дисперсии стробируемых 2Д плазмонов [31, 32, 33]

$$f_{g,n} = \frac{1}{2\pi} \sqrt{\frac{4\pi e^2 N_{2DEG} |q_n|}{m^* \varepsilon_0 (\varepsilon_s + \varepsilon_d \operatorname{coth}(|q_n| d_{2DEG}))}},$$
(9)

где $q_n = 2\pi n / P$, n = 1, 2... (в случае гетероструктур с тремя и пятью КЯ In_xGa_{1-} $_{xN}/GaN n = 3 u n = 5$), *P* – период активной области, состоящей из трех или пяти КЯ InGaN/GaN (Для образцов гетероструктур №СО1, №П1и №0112: *P* = 15 нм, P = 8нм и P = 17.5 нм), $\varepsilon_s = 10.6 + i\alpha$ – диэлектрическая проницаемость подложки, $\varepsilon_d = 9.5 + i\beta$ – диэлектрическая проницаемость барьера, m^* – эффективная масса, определяемая из (9), ε_0 – диэлектрическая постоянная, $d_{\rm 2DEG}$ – глубина залегания 2ДЭГ в гетероструктуре InGaN/AlGaN/GaN ($d_{\rm 2DEG}$ = 28нм, $d_{2DEG} = 34$ нм $d_{2DEG} = 36$ нм для образцов гетероструктур №СО1, №П1 №0112). В мнимых частях для комплексных диэлектрических проницаемостей ε_s и ε_d введены подгоночные параметры $\alpha = 20.7$, $\beta = 131.3$ (в случае образца №0112) и $\alpha = 5.7$, $\beta = 7.8$ (в случае образцов №СО1, №П1), которые учитывают радиационные потери в подложке и в области барьеров активного слоя In_xGa_{1-x}N/GaN. Значения подгоночных параметров подбирались в целях наилучшего соответствия смоделированного сигнала $E_{sim}(t)$ с данными измерений в процессе нахождения функции $F(f_k)$. Для спектрального диапазона, лежащего ниже частоты первого плазмонного резонанса $f < f_{g,1}$,

учитывалось, что ε_s и ε_d являются бездисперсионными с постоянными значениями 11.6 и 10.5 соответственно. Подстановка значений резонансных частот в формулу (9) позволила оценить эффективную массу m^* . На основании значений времени релаксации импульса τ определялась подвижность $\mu = e \tau / m^*$ 2ДЭГ в слое, состоящем из МКЯ In_xGa_{1-x}N/GaN.

Для исследуемых гетероструктур холловская подвижность и концентрация определялись в геометрии Ван дер Пау. Регистрация температурных зависимостей холловской концентрации и холловской подвижности осуществлялась на установке «Ecopia HMS-3000» в магнитных полях до 6 Тл в темноте в интервале от 5 до 300К.

Генерацию ТГц излучения можно рассмотреть в рамках дипольного приближения. Возбуждение электронов проводимости лазерными импульсами фемтосекундной длительности приводит к генерации электронно-дырочных пар, которые ускоряются под действием встроенного пьезоэлектрического поля. ТГц излучение возникает в результате излучения диполей, осциллирующих под действием электрического поля лазерных импульсов. Величину напряженности электрического поля ТГц излучения можно оценить по формуле [32]

$$E_{_{TH_z}} \sim \frac{\partial N}{\partial t} e \mu E_{_{\rm int}} \sin \vartheta, \qquad (10)$$

где E_{int} – напряженность встроенного электрического поля в активной области гетероструктуры, \mathcal{G} – угол между нормалью по отношению к направлению осцилляций диполя и направлением излучения, $\partial N / \partial t$ – изменение во времени концентрации фотовозбужденных электронов с зарядом *е* и подвижностью μ .

ГЛАВА 2. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

2.1 Результаты эксперимента для образцов гетероструктур с пятью КЯ In_xGa_{1-x}N/GaN

На рисунке 5а представлена временная зависимость сигнала детектора для $E_{off}(t)$ и $E_{on}(t)$ образца №СО1, полученные при комнатной температуре.

Рисунок 5. а) Временная форма электрического поля сигнала ТГц импульсов на выходе детектора. Спектр получен для образца №СО1 при температуре 90К. b) Соответствующая форма сигнала ТГц импульсов, полученная методом быстрого Фурье преобразования (БФП).

Из рисунка 5а видно, что основный пик модулированного сигнала, прошедшего через криостат с образцом, сдвинут по шкале времени на величину Δt относительно опорного сигнала. Задержка регистрируемого детектором пучка ТГц импульсов обусловлена конечным временем перестройки системы 2ДЭГ, которое тем больше, чем ниже температура образца. Временем задержки ТГц излучения в подложке можно было пренебречь, так как ее толщина составила 10 мкм. При моделировании динамики 2ДЭГ в гетероструктурах InGaN/AlGaN/GaN с пятью КЯ необходимо было учитывать существующие в КЯ механизмы рассеяния. Среди доминирующих в КЯ механизмов рассеяния выделяют рассеяние на шероховатостях гетерограницы InGaN/GaN, пьезоэлектрическое и кулоновское рассеяние на атомах примеси. Малые относительные отклонения дефектов гетерограниц (2%), установленные методами дифрактометрии и низкая (90К) температура образцов №СО1, №П1

позволили не учитывать механизмы рассеяния в процессе моделирования. Следовательно, задержка импульса (рисунок 5а) во временной области является временем релаксации импульса τ 2ДЭГ в пяти КЯ In_xGa_{1-x}N/GaN, которое характеризует динамику 2ДЭГ в условиях воздействия внешнего фемтосекундного излучения. Для образцов №СО1, №П1 время релаксации 2ДЭГ в пяти КЯ In_xGa_{1-x}N/GaN принимает соответственно значения τ =4.2 нс и τ =3.8 нс.

Из рисунка 5b видно, что моделирование БПФ спектра ТГц импульса хорошо согласуется с данными измерений. БПФ сигнала $E_{sim}(f)$ позволило произвести моделирование мощности $P_{t1,t2}(f)$ и фазовых сдвигов $\Phi_{t1,t2}(f)$ ТГц сигнала с использованием различных временных окон t_1, t_2 лазерных импульсов. Результаты моделирования для образца №СО1 изображены на рисунке6.

Рисунок 6. Частотные зависимости а) мощности и b) фазы спектров эмиссии ТГц излучения. Спектры получены при возбуждении образца №СО1 фемтосекундными лазерными импульсами с временными окнами t₁=130фс и t₂=135фс на длине волны 797 нм.

На рисунке 6 можно видеть модулированные полосами Фабри – Перо осцилляции функций $P_{t1,t2}(f)$ и $\Phi_{t1,t2}(f)$ в диапазоне частот от 1ТГц до 5ТГц. Эффект «бахромы» на частотных спектрах мощности $P_{t1,t2}(f)$ и сдвига фазы $\Phi_{t1,t2}(f)$ возникает вследствие отражения фемтосекундного лазерного импульса от подложки и его многократной интерференции в плоскопараллельных слоях гетероструктуры InGaN/AlGaN/GaN. Осцилляции Фабри – Перо наблюдаются для фемтосекундного импульса с временным окном t₁=130фс. Подавление

полос Фабри – Перо было достигнуто путем вырезания дорожек сигнала перед первым «Эхом» на временной зависимости (рисунок 5a). Методом разворачивания фазы определялась полная фаза, соответствующая числу периодов, укладывающихся в пределах разности хода длин волн падающего и прошедшего через криостат с образцом сигналов. Для этого к каждому значению фазы в диапазоне частот от 0 до 2.37 ТГц, соответствующих первому периоду плазмонных резонансов, прибавлялся множитель 2π . Заранее учитывалось, что скачки фазы отсутствуют в точках перехода через период. Значение разности хода длин волн также было установлено в ходе эксперимента. Результаты для лазерных импульсов с временным окном 130фс показаны на рисунке бb.

частотной Ha зависимости мощности излучения (рисунок 6a) наблюдаются провалы вблизи частот 2Д плазмонных резонансов, обозначенные как f_{e_1}, f_{e_2} . При температурах выше 170К особенности плазмонного резонанса в эксперименте не разрешались. Значения частот плазмонных резонансов, а также их количество являются характерной величиной для низкоразмерной гетероэпитаксиальной структуры, определяющей электронные свойства 2ДЭГ в данной композитной структуре. Из рисунка ба видно, что значения первых двух резонансных частот образца №СО1 равны $f_{g,1} = 2.37$ ТГц и $f_{g,2} = 3.48$ ТГц. В тоже время можно видеть (рисунок 6b), что фазовый сдвиг вблизи плазмонных резонансов является точкой перегиба функции $\Phi_{t1,t2}(f)$, что соответствует минимумам в спектрах мощности $P_{1,t^2}(f)$. В ходе изучения частотных зависимостей, изображенных на рисунке 6b, установлено, что фазовая модуляция превышает десятки градусов (до 14°). Мы считаем, что это связано с нелинейной динамикой электронной плазмы в плоскопараллельных слоях гетероструктуры InGaN/AlGaN/GaN.

С помощью найденного ранее (см. рисунок 5а) значения времени релаксации τ определялась подвижность $\mu = e \tau / m^* 2ДЭ\Gamma$ в пяти КЯ In_xGa_{1-x}N/GaN (таблица 4).

Серия образцов	$N_{2DEG}, 10^{12}$ cm ⁻²	${f_{{}_{g,1}}},\ {}_{\Gamma {}_{\mathbf{U}}}$	$f_{_{g,2}},$ ТГц	au, HC	$\langle m^* angle$	$\begin{array}{c} \mu, \ 10^3 \\ \text{cm}^2/\text{B}\cdot\text{c} \end{array}$
№CO1	2.0	2.37	3.48	4.2	0.42 <i>m</i>	1.7
№ ∏1	2.25	2.22	3.56	3.8	0.40 <i>m</i>	1.5

Таблица 4. Параметры 2ДЭГ в пяти КЯ In_xGa_{1-x}N/GaN по данным частот двумерных плазмонных резонансов при температуре образцов 90К

Спектры эмиссии для образцов гетероструктур №СО1 и №П1 были сняты в диапазоне температур от 90К до 170К с шагом 30К. На основе смоделированного по формуле (3) сигнала $E_{sim}(f)$ были построены частотные зависимости мощности P(f) и фазовых сдвигов $\Phi(f)$ при нагревании образцов от 90К до 170К, что показано на рисунок 7.

Рисунок 7. Под а), b) и c), d) представлены мощность и фаза спектров эмиссии ТГц излучения, полученные, соответственно, для образцов гетероструктур №СО1 и №П1 в диапазоне температур от 90К до 170К с шагом 30К. Пунктирные вертикальные линии обозначают положение частот плазмонных резонансов при температурах образца 90К и 170К. Стрелками обозначено красное смещение 2Д плазмонного резонанса.

Видно (рисунок 7), что наблюдается красное смещение 2Д плазмонной резонансной частоты от значения равного 3.48ТГц (при 90К) до 2.96ТГц (при 170К) для образца №СО1 и от значения 3.56ТГц (при 90К) до 3.2ТГц (при 170К) для образца №П1, которое идентифицируется как в спектрах P(f), так и в спектрах $\Phi(f)$. В настоящей работе наблюдаемое красное смещение 2Д плазмонного резонанса связывается с температурной зависимостью эффективной массы $m^*(T)$ 2ДЭГ. Таблица 5 демонстрирует рассчитанные на

основании формулы (4) значения эффективной массы 2ДЭГ при температурах нагрева образца от 90К до 170К.

Серия			<i>T</i> , K		
образцов	90	110	130	150	170
№CO1	0.42 <i>m</i>	0.44 <i>m</i>	0.44 <i>m</i>	0.46 <i>m</i>	0.51 <i>m</i>
№ ∏1	0.40 <i>m</i>	0.42 <i>m</i>	0.42 <i>m</i>	0.45 <i>m</i>	0.48 <i>m</i>

Таблица 5. Зависимость эффективной массы 2ДЭГ в КЯ InGaN/GaN от температур

Из данных таблицы 5 видно, что эффективная масса демонстрирует температурную зависимость с почти постоянными значениями для температур ниже 130К и с быстрым возрастанием значений при температурах свыше 130К. Мы предполагаем, что наблюдаемая особенность связана с эффектом перенормировки эффективной массы в активном слое InGaN/GaN с ростом температуры. Положение одного из 2Д плазмонных резонансов, например $f_{_{g,2}}$, в зависимости от температуры для образцов №СО1 и №П1 может быть изучено путем наблюдения за движением соответствующего минимума функции P(f)или точки перегиба $\Phi(f)$, которые отмечены на рисунке 7a, b штриховыми линиями соответственно. Как видно из рисунка 7, увеличение температуры образца приводит к уширению резонансной линии и подавлению пиковой величины в спектре мощности (амплитуда изменилась с 0,27 при 90К до 0,08 при 170К для образца №СО1). В тоже время наблюдается уменьшение фазовой модуляции (рисунок 7b, d) в фазовом спектре (амплитудный излом уменьшен с 20° при 90К до 6° при 170К для образца №СО1). Последнее можно объяснить снижением подвижности 2ДЭГ и времени релаксации в области высоких исследуемых температур.

Значения концентрации и подвижности 2ДЭГ в активном слое InGaN/GaN различаются для образцов №СО1 и №П1, что видно из данных холловских измерений (рисунок 8). Это можно объяснить особенностями удержания электронов в активном слое, влиянием гибридизации волновых функций, эффектом межслоевых деформаций и непараболичностью подзон.

В исследуемом диапазоне температур концентрация 2ДЭГ оценивалась на основании данных холловских измерений. Регистрация температурных зависимостей холловской концентрации и подвижности проводилась на установке «HMS-3000» в магнитных полях до 5 Тл в темноте в интервале от 2К до 300К (рисунок 8). Данные измерений показывают, что наблюдается немонотонная зависимость холловской концентрации в диапазоне от 50 до 300К.

Рисунок 8. Температурные зависимости холловской концентрации а) и холловской подвижности b) для образцов гетероструктур №СО1 и №П1. Стрелки указывают начало резкого возрастания функциональных зависимостей.

Видно (рисунок 8a), что в области низких температур (40K < T < 200K) отмечается незначительное уменьшение холловской концентрации со средним постоянным значением 2.0 · 10¹⁰ см⁻² и 2.25 · 10¹⁰ см⁻² для образцов №СО1 и №П1 соответственно. В области более высоких температур T > 200К холловская концентрация 2ДЭГ резко возрастает и достигает в образцах №СО1 и №П1 значения $2.15 \cdot 10^{10}$ см⁻² и $2.6 \cdot 10^{10}$ см⁻². Полученные в результате измерений функциональные объяснить зависимости можно следующим образом. Исследуемые гетероструктуры InGaN/AlGaN/GaN характеризуются широкой запрещенной зоной 2.6 эВ и большим значением концентрации донорной примеси $N_D = 5 \cdot 10^{18} \, \text{см}^{-3}$. Следовательно, в исследуемом диапазоне температур образцы №СО1 и №П1 обладают примесной проводимостью. Переход от примесной к собственной проводимости происходит при температуре перехода $T_s = E_g / k_B \ln(N_c N_v / N_d^2)$, где $E_g -$ ширина запрещенной зоны, N_v , N_c , N_d концентрация двумерных носителей заряда в валентной зоне, в зоне проводимости и на донорном уровне, $k_{\scriptscriptstyle B}$ – постоянная Больцмана. Подстановка в формулу параметров гетероструктур InGaN/AlGaN/GaN приводит к значению температуры перехода $T_s \sim 10^4$ К. Из этого следует, что для диапазона температур 90K < T < 170K концентрация 2ДЭГ постоянна и определяется или примесной проводимостью, или носителями, возбужденными в 2ДЭГ фемтосекундными лазерными импульсами. Отсутствие в литературе данных, касающихся области истощения примеси В полупроводниках InGaN/AlGaN/GaN, не дает возможности утверждать, что концентрация 2ДЭГ в исследуемом диапазоне температур однозначно определяется примесной проводимостью. Данный вопрос требует дополнительных исследований.

Полученная температурная зависимость холловской подвижности 2ДЭГ типична для гетероструктур InGaN/AlGaN/GaN и одинаковым образом наблюдается для образцов №СО1 и №П1 (рисунок 8b). Подвижность двумерных носителей уменьшается с ростом температуры, что объясняется усилением механизма рассеяния 2ДЭГ на оптических фононах при T > 85К.

2.2 Результаты эксперимента для образцов гетероструктур с тремя КЯ In_xGa_{1-x}N/GaN

Получена временная форма электрического поля ТГц импульса при температуре 90К (рисунок 9а) для образца №0112 с тремя КЯ $\ln_x Ga_{1-x}N/GaN$. Видно, что пик модулированного сигнала сдвинут на величину Δt относительно пика опорного сигнала. Задержка обусловлена конечным временем перестройки 2ДЭГ и определяется релаксационными процессами в 2Д электронной плазме. Величина задержки является временем релаксации импульса 2ДЭГ и равно $\tau = 2.3$ пс.

Рисунок 9. а) Осциллограмма электрического поля ТГц импульсов как функция времени и b) результат обработки ТГц сигнала с помощью БФП

На рисунке 9b представлена частотная зависимость Фурье амплитуды ТГц сигнала, а также смоделированная зависимость $E_{sim}(f)$ в диапазоне от 0 до 5 ТГц. Можно видеть три частоты, соответствующие 2Д плазмонным резонансам в диапазоне от 1.5 до 3.5 ТГц. Результаты моделирования мощности и фазового сдвига представлены на рисунке 10a, b.

Рисунок 10. а) Частотные зависимости мощности и b) фазы спектров эмиссии ТГц излучения, полученные при возбуждении фемтосекундными лазерными импульсами с временным окном t₁=130фс на длине волны 800 нм

В случае гетероструктур с тремя КЯ также наблюдаются модулированные полосами Фабри – Перо осцилляции функций $P_{_{11,r2}}(f)$ и $\Phi_{_{r1,r2}}(f)$ но только в диапазоне частот от 1ТГц до 3.5 ТГц (рисунок 10а). Осцилляции Фабри – Перо наблюдаются для фемтосекундного импульса с временным окном t₁=130фс. На рисунке 10b представлена частотная зависимость фазы ТГц излучения. Видно, что фазовый сдвиг вблизи плазмонных резонансов также является точкой перегиба функции $\Phi_{_{r1,r2}}(f)$, что соответствует минимумам в спектрах мощности $P_{_{r1,r2}}(f)$. На частотной зависимости мощности ТГц излучения (рисунок 10а) видно, что значения первых трех резонансых частот равны $f_{_{g,1}} = 1.7$ ТГц, $f_{_{g,2}} = 2.4$ ТГц, $f_{_{g,3}} = 3.3$ ТГц.

Были получены частотные зависимости спектральной мощности и фазового сдвига ТГц излучения в диапазоне температур от 90 до 170К с шагом 30К (рисунок 11).

Рисунок 11. а) Мощность и b) фаза спектров эмиссии ТГц излучения, полученные в диапазоне температур от 90К до 170К с шагом 30К для образца №0112. Пунктирные вертикальные линии обозначают положение частот плазмонных резонансов при температурах образца 90К и 170К.

Стрелками обозначено красное смещение 2Д плазмонного резонанса.

Наблюдается смещение 2Д плазмонной резонансной частоты в область больших значений длин волн (рисунок 11а) от 3.3ТГц (при 90К) до 2.5ТГц (при 170К), которое также идентифицируется как в спектрах P(f), так и в спектрах $\Phi(f)$. Наблюдаемое красное смещение 2Д плазмонного резонанса также связывается с температурной зависимостью эффективной массы $m^*(T)$ 2ДЭГ в трех КЯ In_xGa_{1-x}N/GaN.

Таблица 6 демонстрирует рассчитанные на основании формулы (9) значения эффективной массы 2ДЭГ при температурах нагрева образца от 90К до 170К. Видно, что увеличение температуры образца приводит к уширению минимума 2Д плазмонного резонанса и к подавлению его пиковой величины (рисунок 11а). В тоже время наблюдается усиление величины фазовой модуляции (рисунок 11b). Амплитудный излом увеличивается с 3° при 90К до 20° при 170К.

T, K						
90	110	130	150	170		
0.43 <i>m</i>	0.45 <i>m</i>	0.45 <i>m</i>	0.49 <i>m</i>	0.56 <i>m</i>		

Таблица 6. Температурная зависимость эффективной массы 2ДЭГ в трех КЯ In_xGa_{1-x}N/GaN

Оценивалось полное время затухания плазмонных осцилляций в 2ДЭГ по графикам частотной зависимости спектральной мощности ТГц излучения на основании соотношения $\tau_{gen} = 1/2\pi\Delta f_{g,n}$ (рисунок 11). Для вычисления полного времени затухания τ_{gen} величина $\Delta f_{g,n}$ определялась как ширина минимума 2Д плазмонного резонанса, взятая на половине его высоты (рисунок 11а). Результаты расчетов полного времени затухания τ_{gen} и времени релаксации импульса τ 2ДЭГ в 3 КЯ InGaN/GaN представлены в таблице 7.

Время	Т,К				
затухания	90	110	130	150	170
au , IIC	2.0	1.8	1.3	0.8	0.2
${ au}_{_{gen}},$ пс	1.3	1.0	0.8	0.5	0.4

Таблица 7. Зависимость времени релаксации импульса 2ДЭГ и времени полного затухания от температуры

Из данных таблицы 7 видно, что время полного затухания демонстрирует менее слабую температурную зависимость. В области низких температур время релаксации импульса 2ДЭГ преобладает над временем полного затухания. В области более высоких температур значения становятся сопоставимыми. Данное расхождение может объясняться наличием других форм потерей энергии, например: 1) частичной компенсацией встроенного пьезоэлектрического поля внешними электромагнитными полями, 2) потерями энергии при рассеянии на дефектах решетки, 3) возбуждение наклонных плазмонных волн.

На основании температурных зависимостей времени релаксации импульса и эффективной массы рассчитывалась подвижность 2ДЭГ в трех КЯ In_xGa_{1-x}N/GaN. Результаты расчетов приведены в таблице 8.

$N_{2DEG}, 10^{12} \mathrm{cm}^{-2}$	$f_{g,1}$, ТГц	τ, пс	$\langle m^* angle$	$\mu, 10^3$ cm ² /B·c
2.17	2.6	0.2	0.56 <i>m</i>	4.2

Таблица 8. Параметры 2ДЭГ по данным частот двумерных плазмонных резонансов при температуре нагрева образца 170К В случае образца № 0112 также наблюдается немонотонная зависимость холловской концентрации от температуры (рисунок 12 а). В области низких температур (30K < T < 175K) холловская концентрация имеет постоянное значение, равное 2.17 · 10¹⁰ см⁻². В области более высоких (T >175K) температур $n_H(T)$ возрастает и достигает значения 2.3 · 10¹⁰ см⁻².

Температурная зависимость $\mu_{H}(T)$ изображена на рисунке 12b. Холловская подвижность уменьшается с ростом температуры в связи с увеличением интенсивности механизмов рассеяния на полярных оптических фононах при *T* >85K.

Рисунок 12. а) Температурная зависимость холловской концентрации и b) холловской подвижности

Исследуемые образцы гетероструктур имеют многослойную структуру и не легированы донорной или акцепторной примесью. Следовательно, основной вклад в холловскую подвижность и концентрацию вносит 2ДЭГ. Значения n_{H}, μ_{H} для двух крайних температурных областей представлены в таблице 9.

30H	ζ	170K		
$n_{H}, 10^{12} \text{ cm}^{-2}$	$\mu_{_{H}}, 10^3 \mathrm{cm}^2/\mathrm{B} \mathrm{c}$	$n_{H}, 10^{12} \text{ cm}^{-2}$	$\mu_{_{H}}, 10^3 \text{ cm}^2/\text{B c}$	
2.17	7	2.18	4.2	

Таблица 9. Значения холловской подвижности и концентрации в области низких и высоких температур 2.3 Аналитическое исследование механизма пьезоэлектрической релаксации 2ДЭГ в гетероструктурах с пятью КЯ In_xGa_{1-x}N/GaN

Время релаксации двумерных носителей в гетероструктуре InGaN/AlGaN/GaN с учетом одной заполненной подзоны в рамках пьезоэлектрического механизма рассеяния можно оценить исходя из общего кинетического уравнения Больцмана [34, 35]

$$\sum_{j} K_{ij} \tau_{j} = E_{F_{i}}, \qquad (11)$$

где τ_j и $E_{F_i} = E_F - E_i$ - время жизни двумерных носителей в условиях исследуемого эластичного механизма рассеяния и уровень Ферми в *i*-ой подзоне, E_i - значение уровня энергии размерного квантования. Компоненты K_{ij} тензора рассеяния, определяющие вклад пьезоэлектрических полей в основной канал проводимости, имеют вид [8]

$$K_{ij} = \delta_{ij} \sum_{l} K_{ij}^{1} - K_{ij}^{2} = \frac{\vec{k}_{F_{i}}}{2\pi\hbar} \times \left\{ \int_{0}^{\pi} (\left|\vec{k}_{F_{i}}\right| \delta_{ij} \sum \left|V_{il}(q)\right|^{2} - \left|\vec{k}_{F_{j}}\right| \left|V_{ij}(q)\right|^{2} \cos\theta) d\theta \right\},$$

$$K_{ij}^{1} = \frac{\vec{k}_{F_{i}}^{2}}{2\pi\hbar} \int_{0}^{\pi} \left|V_{il}(q)\right|^{2} d\theta, \qquad K_{ij}^{2} = \frac{\vec{k}_{F_{i}} \vec{k}_{F_{j}}}{2\pi\hbar} \int_{0}^{\pi} \left|V_{il}(q)\right|^{2} \cos\theta d\theta.$$
(12)

Учитывая гладкость потенциала рассеивающих центров вдоль гетерограницы и увеличение роли частичного экранирования потенциала двумерным электронным газом с увеличением температуры, необходимо наложить дополнительное условие, согласно которому $K_{ij}^2 = 0$. Механизм пьезоэлектрической релаксации является эластичным процессом и для описания его кинетики достаточно воспользоваться компонентами K_{ij}^1 . Квадрат матричного потенциала рассеяния в условиях пьезоэлектрической релаксации определяется согласно [36]

$$\left|V_{il}(q)\right|^{2} = \frac{(eh_{14})^{2}k_{B}T}{2} \left(\sum_{n,m} (\mathcal{E}^{-1})_{ij,nm} \sqrt{\int (\frac{A_{l}}{c_{L}} + 2\frac{A_{\tau}}{c_{\tau}}) \frac{\left|\dot{i}_{nm}(q_{z})\right|^{2}}{q_{ij}^{2} + q_{z}^{2}}} dq_{z}\right)^{2},$$
(13)

где h_{14} – пьезоэлектрическая постоянная, c_L, c_τ – постоянные упругости при

продольных и поперечных деформациях соответственно, $k_{\scriptscriptstyle B}$ – постоянная Больцмана, T – температура.

$$\int |\dot{i}_{ii}(q_z)|^2 dq_z = \int dq_z (\int \varphi_i(z) \exp(iq_z z) \varphi_j(z) dz) (\int \varphi_i(z') \exp(iq_z z') \varphi_j(z') dz')^*, (14)$$

$$\Delta q = (\left|\vec{k}_F^{bef}\right|^2 + \left|\vec{k}_F^{aft}\right|^2 - 2\left|\vec{k}_F^{bef}\right|^2 \left|\vec{k}_F^{aft}\right|^2 \cos\theta)^{1/2}, (15)$$

$$\varepsilon_{ij}(q) = \delta_{ij} + \frac{q_s}{q} H_{ij}(q) \chi(q), \qquad (16)$$

где Δq – изменение волнового вектора Ферми до \vec{k}_{F}^{bef} и после \vec{k}_{F}^{aft} акта рассеяния соответственно, $\varepsilon_{ij}(q)$ – матрица диэлектрической проницаемости в приближении теории экранировки Линдхарда, описывающая действующий механизм рассеяния, $H_{ij}(q)$, $\chi(q)$ – форм-фактор и статическая поляризация атомов кристаллической решетки в активном слое InGaN. В явном виде [37]:

$$H_{ij}(q) = \int_{0}^{\infty} dz \int_{0}^{\infty} dz' \phi_i(z) \phi_j(z) \exp(-q|z-z'|) \phi_i(z') \phi_j(z'), \qquad (17)$$

$$\chi(q) = 1 - \Theta(q - 2\left|\vec{k}_{F}\right|) \sqrt{\left(1 - \left(\frac{2\left|\vec{k}_{F}\right|}{q}\right)^{2}\right)}, \quad \Theta(q - 2\left|\vec{k}_{F}\right|) = \begin{cases} 1, \quad q > 2\left|\vec{k}_{F}\right| \\ 0, \quad q < 2\left|\vec{k}_{F}\right| \end{cases}.$$
(18)

Гетероструктуры InGaN/AlGaN/GaN рассматривались с учетом одной заполненной подзоны размерного квантования, поэтому i = j. Использование матричной формы квантовой теории в целях расчёта квадрата потенциала рассеяния 2ДЭГ и компонент тензоров в условиях действующего механизма пьезоэлектрического рассеяния позволило получить выражение для времени релаксации 2ДЭГ. Данная форма записи будет удобной для дальнейшего математического моделирования кинетики процесса и оценки динамических параметров 2ДЭГ

$$\tau = \frac{1}{A+B},\tag{19}$$

где

$$A = \frac{1}{\tau_{L}} = \frac{k_{B}T\alpha_{L}}{\pi\hbar|\vec{k}|^{2}} \int_{0}^{\pi} q(S(q))^{2} f_{L}(q) d\theta,$$

$$A = \frac{1}{\tau_{T}} = \frac{k_{B}T\alpha_{T}}{\pi\hbar|\vec{k}|^{2}} \int_{0}^{\pi} q(S(q))^{2} f_{T}(q) d\theta.$$
(20)

В выражении (20) введены обозначения, согласно которым [8]

$$\alpha_{L} = (eh_{14})^{2} \frac{9m^{*}}{128\hbar^{2}c_{L}}, \alpha_{T} = (eh_{14})^{2} \frac{13m^{*}}{256\hbar^{2}c_{T}},$$

$$S(q) = \frac{q}{q + \frac{2m^{*}e^{2}b(8b^{2} + 9bq + 3q^{2})}{\varepsilon_{s}\hbar^{2}(b + q)^{3}}}$$
(21)

а безразмерные форм-факторы, определяющие вклад размера частиц в продольный и поперечный канал релаксации, имеют вид

$$f_{T}(q) = \frac{13 + 78(q/b) + 72(q/b)^{2} + 82(q/b)^{3} + 36((q/b)^{4} + 6(q/b)^{5})}{13(1 + (q/b))^{6}},$$

$$f_{L}(q) = \frac{1 + 6(q/b) + 12(q/b)^{2} + 2(q/b)^{3}}{(1 + (q/b))^{6}}.$$
(22)

Определялся нормирующий параметр *b* вместе с использованной в процессе моделирования волновой функцией Фанга-Ховарда ($\psi(z) = (b^3/2)^{1/2} z \exp(-bz/2)$). Квадрат модуля волновой функции Фанга-Ховарда, как и любой волновой функции, характеризует распределение плотности вероятности локализации двумерного носителя заряда в объеме dV = dxdydz. Было получено выражение для оценки корреляционного параметра *b*, который рассчитывается согласно

$$b = \left(\frac{33\pi m^* N}{2\varepsilon_s}\right)^{1/3} \left(\frac{e}{\hbar}\right)^{2/3},$$
(23)

где N – концентрация 2ДЭГ, \hbar – постоянная Планка, ε_s – диэлектрическая проницаемость, $m^* = \hbar^2 (d^2 E / dk^2)^{-1}$ – эффективная масса.

Достоверность рассчитанного по формуле (23) значения можно определить на основании дополнительного выражения для оценки параметра *b*

$$b = \eta(N)^{1/3},$$
 (24)

где *η* - нормировочный параметр.

Формулу для расчета времени релаксации по ансамблю из 5 КЯ в условиях доминирующего механизма пьезоэлектрического рассеяния следует записать в виде

$$\tau = \tau_i^{piz} \pm \Delta \tau, \tag{25}$$

где допустимая величина среднеквадратичного интервала

$$\Delta \tau = \frac{\sqrt{\sum_{i=1}^{5} (\tau_i - \langle \tau \rangle)^2}}{2}.$$
(26)

Подвижность 2ДЭГ в активном слое InGaN можно оценить с помощью выражения

$$\mu = e \tau / m^*. \tag{27}$$

В рамках модели нами получена формула по расчету напряженности суммарного электрического поля, складывающегося из компонент встроенного и внешнего электрического поля:

$$\left|\vec{E}^{i}\right| = \left|-\frac{\hbar\vec{k}^{i}mL^{2}E^{i}{}_{g}}{\mu m^{*}(mL^{2}E^{i}{}_{g} + \pi^{2}\hbar^{2}(1 + m^{*}/m)^{2})} + \vec{E}^{W}_{i}\right|,$$
(28)

где L – ширина 1 КЯ, i=1,2,...К, где К – число КЯ (для InGaN/GaN K=5), E_{s}^{i} – ширина запрещенной зоны в области i-ой КЯ, $\left|\vec{E}_{i}^{w}\right|$ - модуль напряженности внешнего электрического поля, \vec{k}^{i} – волновой вектор.

Ширина запрещенной зоны E_g была рассчитана на основании эмпирического выражения с учетом мольной концентрации In в слое InGaN [38] $E_g = 1.0x + 3.45(1-x) - 1.3x(1-x),$ (29)

где *х* - мольное содержание In.

Энергетический спектр частиц в КЯ InGaN/GaN был рассчитан путем численного решения трансцендентного уравнения

$$k_{1}L = \pi n - 2 \arcsin(\hbar k_{1} / \sqrt{2m^{*}U_{0}}), \ n = 1, 2, 3$$
(30)

где *L*- ширина КЯ, $k_1 = \sqrt{\frac{2m^*E}{\hbar^2}}$ - волновой вектор, определяющий дискретные энергетические уровни в активной области InGaN/GaN, U_0 - высота потенциального барьера. Формула (30) является решением уравнения Шредингера для частицы в двумерной квантовой яме конечной высоты, которая

использовалась для расчета энергетического спектра.

Важным остается вопрос об оценке степени вырождения 2ДЭГ в квантовых ямах InGaN/GaN, обусловленной тождественностью квантовых частиц. Чтобы произвести соответствую оценку, нужно рассчитать температуру вырождения T_0 , характеризующую степень вырождения 2ДЭГ в композитных Квантово-размерные эффекты, структурах. являющиеся следствием неразличимости двумерных носителей в КЯ InGaN/GaN, возникают в том случае, когда среднее расстояние между частицами $\langle a \rangle \sim \lambda$ (где λ - длина волны де Бройля), а исследуемые температуры лежат в диапазоне $T < T_0$. При выполнении этих условий 2ДЭГ вырожден и подчиняется статистике Ферми-Дирака. Для температур $T > T_0$ газ подчиняется классическому распределению Больцмана. Для полупроводников температурой вырождения 2ДЭГ является температура Ферми, которую можно оценить, воспользовавшись известной формулой

$$T_{F} = \frac{\hbar^{2}}{2m^{*}k_{R}} (3\pi^{2}N)^{2/3}.$$
 (31)

Подстановка мировых констант $k_B = 1.38 \cdot 10^{-23}$ Дж · K⁻¹ и концентрации 2ДЭГ приводит к значению температуры вырождения $T_F = 2.5 \cdot 10^3$ K, что гораздо больше исследуемых температур. Стоит отметить, что для полупроводников T_F возрастает с уменьшением эффективной массы частиц и увеличением плотности 2ДЭГ в КЯ.

Исходные эмпирические константы в системе SGS, значения которых применялись в расчетах представлены в таблице 12.

$h_{14} = 7 \cdot 10^8 / 150$
$c_L = 2.6 \cdot 10^6, \ c_T = 5.2 \cdot 10^7$
$m^* = 0.27m$
$b = 3.98 \cdot 10^4$
$\eta = 1.8 \cdot 10^2$

Таблица 12. Исходные параметры гетероструктуры InGaN/AlGaN/GaN

На основании изложенной математической модели была получена численная оценка времени релаксации 2ДЭГ при пьезоэлектрическом рассеянии τ^{pz} в активном слое InGaN. Как показали теоретические расчеты, полученное значение при комнатных температурах (T = 300 K) составляет ~10⁻⁹ с. Следовательно, рассматриваемый механизм рассеяния является определяющим и в значительной степени ограничивает время релаксации электронов 2ДЭГ. С помощью полученной математической модели были рассчитаны значения первого E_v^1 и второго E_v^2 уровня размерного квантования, а также ширина запрещенной зоны E_g в пределах *i*-ой КЯ (таблица 13).

$\overline{\ }$	№ КЯ					
C	anua	1	2	3	4	5
	бразиов					
	τ^{pz} .10 ⁻⁹	5.77 ± 0.34	4.82 ± 0.34	4.93 ± 0.34	5.73 ± 0.34	4.68 ± 0.34
	C					
1	E_v^1 , $\Im B$	2.617	2.743	2.747	2.754	2.764
	E_V^2 , $\Im B$	3.200	3.210	3.213	3.220	3.231
	E_{g} , эВ	3.42	3.47	3.49	3.54	3.60
	$\left ec{E}^{i} ight ,$	2.45 ± 0.25	2.38 ± 0.25	2.36 ± 0.25	2.39 ± 0.25	2.49 ± 0.25
	МВ/см					
	$ au^{\scriptscriptstyle pz}$,10 ⁻⁹	5.17 ± 0.14	4.90 ± 0.14	5.01 ± 0.14	5.13 ± 0.14	4.86 ± 0.14
	c					
2	E_v^1 , эВ	2.651	2.660	2.662	2.675	2.683
	E_v^2 , $\Im B$	3.143	3.151	3.152	3.163	3.179
	E_{g} , эВ	3.12	3.20	3.20	3.24	3.29
	$\left ec{E}^{i} ight $,	2.88 ± 0.31	2.76 ± 0.31	2.72 ± 0.31	2.80 ± 0.31	2.83 ± 0.31
	МВ/см					
	$ au^{\scriptscriptstyle pz}$,10 ⁻⁹	4.78 ± 0.25	4.88 ± 0.25	5.01 ± 0.25	4.82 ± 0.25	5.02 ± 0.25
	c					
3	E_v^1 , эВ	2.642	2.649	2.652	2.659	2.664
	E_v^2 , $\Im B$	3.158	3.160	3.163	3.166	3.171
	$E_{g}, \Im B$	3.30	3.38	3.40	3.46	3.53
	$\left ec{E}^{i} ight ,$	2.33 ± 0.18	2.27 ± 0.18	2.25 ± 0.18	2.33 ± 0.18	2.41 ± 0.18
	МВ/см					

Таблица 13. Параметры 2ДЭГ в гетероструктуре InGaN/AlGaN/GaN

Рассчитанные значения хорошо согласуются с теми, которые были получены авторами работы [38] в ходе интерпретации спектров электропропускания, снятых с образцов гетероструктур InGaN/AlGaN/GaN при разных обратных смещениях p-n-перехода (таблица 14). Это говорит о хорошем подкреплении теории с экспериментом.

Серия образц	№ КЯ	Теоретические значения		Экспериментальные значения	
OB		E_V^1 , $\Im B$	E_V^2 , \mathbf{B}	E_V^1 , $\Im \mathbf{B}$	E_V^2 , \mathbf{B}
1	1	2.62	3.20	2.74	3.10
	2	2.74	3.21	2.76	3.11
	3	2.75	3.21	2.76	3.11
	4	2.75	3.22	2.77	3.12
	5	2.76	3.23	2.78	3.13
2	1	2.65	3.14	2.82	3.18
	2	2.66	3.15	2.82	3.18
	3	2.66	3.15	2.82	3.18
	4	2.68	3.16	2.83	3.19
	5	2.68	3.18	2.85	3.20

Таблица 14. Значения квантово-размерных энергетических уровней в активном слое InGaN/GaN

Мольное содержание In (x) в слое GaN, средняя по ансамблю квантовых ям подвижность μ , концентрация двумерных носителей N и величина модуля волнового вектора $|\vec{k}|$ представлены в таблице 15. Рассчитанные в ходе исследований значения $|\vec{E}_i|$ для всех 5 КЯ представлены в таблице 13.

Из данных таблицы 13 и 15 видно, что пьезоэлектрическое рассеяние характеризуется высокой подвижностью и малыми временами релаксации двумерных носителей заряда. Исследуемый механизм является доминирующим и влияет на характер переходов двумерных носителей между разрешенными энергетическими зонами. Высокая подвижность 2ДЭГ способствует высокой частоте излучательных переходов, однако малое значение времени релаксации проявляется в отличной от нуля частоте безызлучательной рекомбинации. Частота таких переходов определяется величиной обратного смещения p-nперехода и концентрацией 2ДЭГ в полупроводнике.

Серия образцов	<i>x</i> ,%	μ , 10 ³ cm ² /B·c	$N, 10^{13} \text{cm}^{-2}$	$ \vec{k} , 10^7 \text{ cm}^{-1}$
1	6	2.14	2.61	6.5
2	15	3.23	2.87	7.1
3	18	3.10	2.75	6.8

Таблица 15. Аналитические данные 2ДЭГ, полученные в ходе расчетов для серии образцов гетероструктур InGaN/AlGaN/GaN

Моделирование температурной зависимости времени релаксации проводилось на основании формулы (20) с предварительным нахождением интеграла. Соответствующая температурная зависимость подвижности была получена подстановкой результата нахождения интеграла (20) в формулу (27) (рисунок 12). Интерполяция полученных аналитических значений методом наименьших квадратов (МНК) привела к тому, что температурная зависимость времени релаксации описывается экспоненциальным, а соответствующая зависимость подвижности линейным законами. В случае вырожденного 2ДЭГ соответствующие температурные зависимости продольных составляющих подвижности среднего значения времени релаксации описываются И выражением [36]

$$\mu_{\parallel} \sim T^{\beta_i}, \left\langle \tau^{pz}_{\parallel} \right\rangle \sim (1 - \exp(\frac{-N}{N_c}))^{-1}, \qquad (32)$$

где $N_c = \frac{k_B T m^*}{\pi d \hbar^2}$ - эффективная плотность состояний 2ДЭГ в подзоне размерного квантования, d = a + b - период активной области, состоящей из квантовых ям и барьеров с шириной а и b соответственно, N - концентрация 2ДЭГ, $\beta_i \cong 1$ коэффициент. появляется вследствие который усреднения продольной компоненты времени релаксации по температуре (50<T<300) в приближении степенной Именно зависимости. ЭТИМ определяются линейный И экспоненциальный вид полученных зависимостей. Поперечные составляющие подвижности и времени релаксации слабо зависят от температуры и не вносят

вклад в общий канал релаксации.

Согласно формулам (27) и (32) температурная зависимость подвижности в основном определяется температурной зависимостью времени релаксации 2ДЭГ. Следовательно, увеличение температуры должно приводить к 2ДЭГ. экспоненциальному снижению подвижности Однако. В случае гетероструктур InGaN/AlGaN/GaN с 5 КЯ, легированных атомами примеси, реализуется ситуация $N \ge N_c$, что позволяет разложить выражение (32), содержащее экспоненту, в ряд по малому параметру. Это приводит в формуле к линейной температурной зависимости продольной компоненты (32) подвижности.

Графики, полученные в ходе моделирования с применением МНК (рисунок 13), соответствуют фундаментальным зависимостям (32), что говорит о согласии предложенной модели и кинетики исследуемых процессов. Из графиков видно, что максимальные значения подвижности и времени релаксации достигаются при низких температурах, в области которых механизм пьезоэлектрического рассеяния характеризуется низкой интенсивностью.

Рисунок 13. Температурные зависимости времени релаксации и подвижности электронов 2ДЭГ для серии образцов гетероструктур InGaN/AlGaN/GaN

На основании полученных значений времени релаксации в условиях доминирующего механизма пьезоэлектрического рассеяния была получена оценка суммарного значения напряженности электрического поля в гетероструктуре InGaN/AlGaN/GaN на основании формулы (28). Результаты расчетов представлены в таблице 16. На основании данных таблицы 16 можно

сделать вывод, что существует неодинаковое распределение суммарного поля вдоль всего активного слоя InGaN/GaN, что проявляется в разных значениях $|\vec{E}^i|$ в пределах *i*-ой КЯ.

На рисунке 14 представлено распределение модуля суммарного значения напряженности электрического поля вдоль активного слоя. Из распределения, представленного на рисунке 14, следует, что в квантовых ямах, граничащих со слоями n-GaN и p-GaN, сдвиг энергетических уровней максимальный. Минимум напряженности электрического поля приходится на третью квантовую яму, в пределах которой величина сдвига Штарка, соответственно, минимальная.

Рисунок 14. Распределение величины напряженности суперпозиционного значения электрического поля вдоль активного слоя гетероструктуры InGaN/AlGaN/GaN

Зависимость времени релаксации при пьезоэлектрическом рассеянии от энергии 2ДЭГ отличается от соответствующей зависимости для объемных полупроводников, из которых она состоит. В общем случае зависимость времени релаксации от энергии в условиях пьезоэлектрической релаксации определяется согласно формуле [39]

$$\frac{1}{\tau_{pz}(E)} = \frac{1}{\tau_0(E)} G_i(E),$$
(33)

где $\tau_0(E) = (a\sqrt{k_x^2 + k_y^2})\tau(E), \tau(E)$ - соответствующая зависимость для объемных

образцов, $G_i(E)$ - функция, параметрами которой является ширина КЯ, концентрация 2ДЭГ и период активного слоя, k_x, k_y - компоненты волнового вектора. Корреляция времени релаксации и энергии в приближении двумерного электронного газа в отличие от трехмерного случая имеет вид степенной зависимости

$$\left\langle \tau_{\parallel}^{pz} \right\rangle \sim E_{F}^{\beta_{i}+1/2},$$
 (34)

где *E_F*- уровень Ферми. Данный факт объясняет динамику 2ДЭГ. Уменьшение времени релаксации происходит параллельно с увеличением сдвига Штарка в пределах КЯ вдоль активного слоя GaN.

Например, в работе [38] экспериментально доказано градиентное распределение электрического поля вдоль активного слоя InGaN/GaN, что свидетельствует о хорошем согласии предложенной математической модели с экспериментом.

Таким образом, на основании предложенной математической модели получено значение времени релаксации импульса 2ДЭГ в условиях встроенных пьезоэлектрических полей, которое характеризуется значением ~10⁻⁹с.

2.4 Сравнение результатов для образцов гетероструктур с пятью и тремя КЯ In_xGa_{1-x}N/GaN

Сравнение данных эксперимента позволило установить отличия и общие закономерности в значениях времени релаксации импульса, подвижности и эффективной массы 2ДЭГ в гетероструктурах с тремя и пятью КЯ.

- В случае гетероструктур с тремя КЯ In_xGa_{1-x}N/GaN, также как и в случае с пятью КЯ In_xGa_{1-x}N/GaN при взаимодействии 2ДЭГ с фемтосекундными лазерными импульсами наблюдаются плазмонные осцилляции с характерными резонансными частотами. Однако в случае гетероструктур с тремя КЯ In_xGa_{1-x}N/GaN наблюдается 3 резонансные частоты (рисунок 10). Увеличение числа КЯ в активном слое приводит к уменьшению количества наблюдаемых резонансов до двух в спектрах мощности ТГц излучения и к росту напряженности электрического поля терагерцового импульса [8, 30].
- 2. Встроенные пьезоэлектрические поля в активной области искривляют зону проводимости. Легирование валентную зону и донорной И акцепторной примесью в случае образцов гетероструктур с пятью КЯ приводит К понижению примесного уровня Ферми, способствуя увеличению разности между объемными и поверхностными уровнями Ферми. В результате, валентная зона и зона проводимости еще более искривляются, а встроенное электрическое поле возрастает. Поэтому в случае образцов с пятью КЯ, которые легированы донорной и акцепторной примесью, напряженность электрического поля ТГц излучения согласно формуле (10) больше.
- 3. Чтобы понять, почему число наблюдаемых 2Д плазмонных резонансов необходимо разобраться, образом меньше, каким происходит распределение энергии лазерного излучения, часть которого подвергается гетероструктуры, диссипации В слоях а другая затрачивается на возбуждение необходимо плазмонных осцилляций. Для ЭТОГО проанализировать значения времен релаксации 2ДЭГ, которое возрастает

при увеличении числа КЯ от значения ~10⁻¹²с (гетероструктуры с 3 КЯ) до ~10⁻⁹с (гетероструктуры с 5 КЯ). Подобная закономерность объясняется наличием в барьерах GaN легирующей примеси, что приводит к увеличению напряженности встроенного электрического поля, препятствующего дезориентации осциллирующих диполей, возбуждаемых фемтосекундными импульсами. Следовательно, время релаксации диполей растет.

- 4. С ростом числа КЯ возрастает конверсия мощности фемтосекундного лазера в мощность ТГц-излучения с 0.005% до 0.01%. Это также связано с увеличением напряженности встроенного электрического поля, а также, может объясняться более многократным отражением лазерного пучка в плоскопараллельных слоях гетероструктуры, в результате чего происходит усиление его мощности.
- 5. С ростом числа КЯ уменьшается модуляция фазы вблизи частот плазмонных резонансов. Для гетероструктур с тремя КЯ амплитудный излом составляет 17⁰, в то время как для гетероструктур с пятью КЯ температурный излом составлял 14⁰. В ходе изучения частотных зависимостей фазового сдвига ТГц излучения установлено, что фазовая модуляция превышает десятки градусов (до 17°) вблизи частот плазмонных резонансов.
- 6. В диапазоне температур от 30 до 170К значение холловской концентрации постоянное (рисунок 12). Следовательно, обнаруженный эффект перенормировки эффективной массы и модуляции фазы связаны с нелинейной динамикой 2ДЭГ, а не с температурной зависимостью холловской концентрации.
- 7. Исследование времени релаксации 2ДЭГ в гетероструктурах с помощью THz-TDs помогло получить представление о действующих механизмах рассеяния и о вкладе каждого из них в общий канал релаксации 2ДЭГ. Например, полученные в случае 5 КЯ значения времени релаксации

импульса (~10⁻⁹с) хорошо согласуются с теоретическими данными по исследованию механизма пьезоэлектрического рассеяния 2ДЭГ.

ПОЛУЧЕННЫЕ В РАБОТЕ РЕЗУЛЬТАТЫ

- Разработана методика, основанная на использовании THz-TDs спектроскопии с временным разрешением, для регистрации плазмонных резонансов в 2ДЭГ гетероструктурах InGaN/AlGaN/GaN.
- С помощью регистрации частот 2Д плазмонных резонансов методом THz-TDs спектроскопии определены времена релаксации, подвижности и эффективная масса 2ДЭГ в трех и пяти КЯ In_xGa_{1-x}N/GaN.
- Обнаружено осциллирующее поведение мощности выходного ТГц излучения с минимумами в диапазоне частот от 1.5ТГц до 5ТГц, связанное с нелинейной динамикой 2ДЭГ в МКЯ In_xGa_{1-x}N/GaN.
- 4. Установлено, что 2ДЭГ в трех КЯ In_xGa_{1-x}N/GaN характеризуется значением времени релаксации импульса 0.2 пс, подвижности 4.2 · 10³ см²/В · с и эффективной массы 0.56*m* при температуре нагрева до 170К. В случае пяти КЯ, время релаксации 2ДЭГ принимает значение 4.2 нс, подвижность 1.7 · 10³ см²/В · с и эффективная масса 0.42*m*.
- 5. Обнаружен эффект модуляции фазы вблизи частот плазмонных резонансов с ростом температуры нагрева от 90К до 170К.
- 6. Установлено, что с ростом температуры нагрева от 90К до 170К наблюдается эффект перенормировки эффективной массы в активном слое гетероструктуры InGaN/AlGaN/GaN и красное смещение плазмонной резонансной частоты. В гетероструктурах с тремя КЯ In_xGa_{1-x}N/GaN значение эффективной массы изменяется в диапазоне от 0.43 *m* при 90К до 0.56 *m* при 170К. Для гетероструктур с пятью КЯ изменение эффективной массы в зависимости от температуры лежит в диапазоне значений от 0.42 *m* при 90К до 0.51 *m* при 170К.

ЗАКЛЮЧЕНИЕ

Таким образом, в настоящей работе в ходе исследований по взаимодействию лазерного пучка длительностью 130фс с гетероструктурой InGaN/AlGaN/GaN получены и проанализированы частотные зависимости мощности и фазового сдвига ТГц излучения, с помощью которых получены значения времени релаксации импульса, подвижности и эффективной массы 2ДЭГ во МКЯ In_xGa_{1-x}N/GaN.

Предложена методика получения и обработки ТГц спектров эмиссии на основе БФП временной формы электрического поля ТГц излучения, что позволило оценить значения параметров 2ДЭГ без использования программных пакетов и громоздких математических расчетов.

Полученные данные могут быть использованы для оптимизации технологических параметров роста композитных гетероструктур и выходной мощности излучения СВЧ - детекторов, сверхъярких светодиодов и лазерных диодов на их основе.

БЛАГОДАРНОСТИ

Автор выражает благодарности научному руководителю профессору Авакянцу Л.П. за помощь в подготовке диссертации, коллективу кафедры общей физики Физического факультета МГУ имени М.В. Ломоносова, сотрудникам института лазерных и плазменных технологий НИЯУ МИФИ за помощь в проведении эксперимента, а также коллективу отдела ЗАО НПЦ «Полюс» за предоставленные образцы.

- Palacios T., et al. AlGaN/GaN high electron mobility transistors with InGaN backbarriers // IEEE Electron Device Lett. IEEE. 2006. Vol. 27, № 1. P. 13– 15.
- Куэй Р. Электроника на основе нитрида галлия / под ред. Васильев А.Г. Москва: Техносфера, 2011, 587 С.
- 3. Олешко В.И., Горина С.Г. Механизмы разрушения в гетероструктурах InGaN/GaN под действием сильноточного электронного пучка // Ученые записки физического факультета. 2015. Т. 5, № 155501. С. 1 8.
- Гальчина Н.А., Коган Л.М., Сощин Н.П. и др. Спектры электролюминесценции ультрафиолетовых светодиодов на основе p-nгетероструктур InGaN/AlGaN/GaN, покрытых люминофорами // ФТП. 2007. Т. 41, № 9. С. 758 – 763.
- 5. Горбатова А.В., Хусяинов Д.И., Ячменев А.Э. и др. Фотопроводящий ТНz-детектор на основе сверхрешеточной гетероструктуры с плазмонным усилением // Письма в ЖТФ. 2020. Т. 46, № 22. С. 10 – 14.
- Manfra M. J., Baldwin K. W., Sergent A. M., et al. Electron mobility in very low density InGaN/AlGaN/GaN heterostructures // Appl. Phys. Lett. 2004. Vol. 85, № 10. P. 1722-1724.
- Бадгутдинов М.Л., Юнович А.Э. Спектры излучения гетероструктур с квантовыми ямами типа InGaN/AlGaN/GaN: модель комбинированной двумерной плотности состояний // ФТП. 2008. Т. 42, № 4. С. 438-446.
- Бурмистров Е.Р., Авакянц Л.П. Исследование параметров двумерного электронного газа в квантовых ямах InGaN/GaN методом терагерцового плазмонного резонанса // ФТП. 2021. Т.55, № 11. С. 1059-1067.
- Протасов Д.Ю., Малин Т.В., Тихонов А.В. и др. Рассеяние электронов в гетероструктурах AlGaN/GaN с двумерным электронным газом // ФТП. 2013. Т. 47, № 1. С. 36 – 48.
- 10. Gurusinghe M.N., Davidsson S.K., Andersson T.G. Two-dimensional electron

mobility limitation mechanisms in $Al_xGa_{1-x}N/GaN$ heterostructures // Phys. Rew. B. 2005. Vol. 72, No 4. P. 045316-045327.

- Пожела Ю., Пожела Е., Юцене В. Подвижность и рассеяние электронов на полярных оптических фононах в гетероструктурных квантовых ямах // ФТП. 2000. Т. 34, № 9. С. 1053-1057.
- 12. Zanato D., Balkan N., Ridley B. K., et al. Hot electron cooling rates via the emission of LO-phonons in InN // Semicond. Sci. Technol. 2004. Vol. 19, № 8.
 P. 1024 1030.
- 13. Smolyaninov I. I., Mazzoni D. L., Mait J., et al. Experimental study of surface-plasmon scattering by individual surface defects // Phys. Rev. B. 1997. Vol. 56, № 3. P. 1601–1611.
- Burmistrov E.R., Avakyants L.P. Piezoelectric relaxation of two-dimentional electron gas in InGaN/GaN heterostructures with quantum wells // SN Applied Sciences. 2021. Vol. 3, №. 8. P. 758 – 765.
- 15. Бурмистров Е.Р., Авакянц Л.П. Время релаксации, подвижность и эффективная масса 2ДЭГ в квантовых ямах InGaN/GaN по данным терагерцового плазмонного резонанса // Вестник Московского Университета. Серия 3. Физика. Астрономия. 2021. № 5. С. 106–114.
 - Richard B., Schasfoort M. Handbook of Surface Plasmon Resonance, 2017. P.
 555.
 - 17. Ando A., Kurose T., Reymond V., et al. Electron density measurement of inductively coupled plasmas by terahertz time-domain spectroscopy (THz-TDS) // J. Appl. Phys. 2011. Vol. 110, № 7. P. 284 292.
 - Jamison S. P., Shen J., Jones D. R., et al. Plasma characterization with terahertz time–domain measurements // J. Appl. Phys. 2003. Vol. 93, № 7. P. 4334 – 4336.
 - 19. Strothkämper C., Bartelt A., Eichberger R., et al. Microscopic nobilities and cooling dynamics of photoexcited carriers in polycrystalline CuInSe₂ // Phys. Rev. B. 2014. Vol. 89, № 11. P. 1 5.
 - 20. Mendoza-Galvan A., Gonzalez-Hernandez J. Drude-like behavior of Ge: Sb:

Te alloys in the infrared // J. Appl. Phys. 2000. Vol. 87, № 760.

- 21. Orio M., Pantazis D. A., Neese F. Density Functional Theory // Photosynthesis Research. 2009. Vol. 102, № 2. P. 443-453.
- 22. Орлецкий И.Г., Илащук М.И., Брус В.В. и др. Электрические и фотоэлектрические свойства гетероструктур TiN/p-InSe.// ФТП. 2016. Т. 50, №. 3. С. 339 – 343.
- Rehman W., Milot R. L., Eperon G. E., et al. Charge-Carrier Dynamics and Mobilities in Formamidinium Lead Mixed-Halide Perovskites // Advanced Materials. 2015. Vol. 27, № 48.
- 24. Yettapu G.R., Talukdar D., Sarkar S., et al. Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrystals: Remarkably high carrier mobilities and large diffusion lengths // Nano letters. 2016. Vol. 16, № 8.
- 25. Ulatowski A. M., Herz L. M., Johnston M. B. Terahertz Conductivity Analysis for Highly Doped Thin-Film Semiconductors // Journal of Infrared, Millimeter, and Terahertz Waves. 2020. Vol. 41. № 12. P. 1431–1449.
- 26. Асланян А.Э., Авакянц Л.П., Червяков А.В. и др. Исследование напряженности внутренних электрических полей в активной области светодиодных структур на основе InGaN/GaN с разным числом квантовых ям методом спектроскопии электропропускания // ФТП. 2020. Т. 54, № 4. С. 420 – 425.
- 27. Schley P., Goldhahn R., Gobsch G., et al. Influence of strain on the band gap energy of wurtzite InN // Physica Status Solidi (B). 2009. Vol. 246. № 6. 8 p.
- 28. Pelá R.R., Caetano C., Marques M., et al. Accurate band gaps of AlGaN, InGaN and AlInN alloys calculations based on LDA-1/2 approach // Applied Physics Letters. 2011. Vol. 98, № 15. 14 p.
- 29. Асланян А.Э., Авакянц Л.П., Червяков А.В. и др. Исследование распределения встроенных электрических полей в светодиодных гетероструктурах с множественными квантовыми ямами GaN/InGaN методом электроотражения // ФТП. 2020. Т. 54, № 4. С. 420 – 425.
- 30. Бурмистров Е. Р., Авакянц Л. П. Пьезоэлектрическая релаксация

двумерного электронного газа в гетероструктурах с квантовыми ямами InGaN/GaN // Известия высших учебных заведений. Физика. 2021. Т. 64, № 5. С. 9–19.

- 31. Schley P., Goldhahn R., Gobsch G., et al. Influence of strain on the band gap energy of wurtzite InN // Physica Status Solidi (B). 2009. Vol. 246, № 6. P. 8.
- 32. Allen S.J., Tsui D.C., Logan R.A. Observation of the two-dimensional plasmon in silicon inversion layers // Physical Review Letters. 1977. Vol. 38, P. 980 – 983.
- 33. Pelá R.R., Caetano C., Marques M., et al. Accurate band gaps of AlGaN, InGaN and AlInN alloys calculations based on LDA-1/2 approach // Applied Physics Letters. 2011. Vol. 98, № 15. 14 p.
- 34. G. Yu et al. Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78-4.77 eV) by spectroscopic ellipsometry and the optical transmission method // Appl. Phys. Lett. AIP. 1997. Vol. 70, № 24. P. 3209–3211.
- 35. Бурмистров Е.Р., Афанасова М.М. Рассеяние носителей заряда на ионах примеси в гетероструктуре InAs/AlSb // Известия вузов. Физика. 2020. Т. 63, № 3. С. 88 – 96.
- 36. Протасов Д.Ю., Бакаров А.К., Торопов А.И. Подвижность двумерного электронного газа в DA-pHEMT гетроструктурах с различной шириной профиля delta-n-слоев // ФТП. 2018. Т. 52, № 1. С. 48 – 57.
- 37. Ландау Л.Д., Лифшиц Е.М. Квантовая механика. Нерелятивистская теория, 1963, 520 С.
- 38. Асланян А.Э. Модуляционная спектроскопия светодиодных гетероструктур на основе InGaN/GaN : специальность 01.04.05 «Оптика» : автореф. дис. на соискание ученой степени канд. физ. мат. наук / Асланян Артем Эдуардович; Московский государственный университет имени М.В. Ломоносова. Москва, 2019, 92 С.
- 39. Аскеров Б.М. Электронные явления переноса в полупроводниках. М.: Наука. Гл. ред. Физ.-мат. Лит., 1985, 95 С.

- 40. Васильевский И.С., Кульбачинский В.А., Лунин Р.А., и др. // ЖЭТФ. 2007. Т.132. В.1. С.197.
- 41. Данилов Ю.А. Магнитные полупроводниковые наноструктуры для приборов спинтроники // Вестник РГРТУ. 2009. № 4. 14 с.
- 42. Емельянов В.А., Васев А.В., Семягин Б.Р. и др. Рост твердых растворов InAs_xSb_{1-x} на отклоненных подложках GaAs(001) методом молекулярно лучевой эпитаксии // ЖТФ. 2019. Т.53, № 4. С. 512 523.