
Семинары 3-4. Электромагнитные волны. Давление света. 

 

Основной материал семинара изложен в конспекте лекций по оптике. 

Здесь только дополнительные моменты. 

 

1. В вакууме распространяется электромагнитная волна, электрическая составляющая 

которой изменяется по закону: 

     kxtEtxt  sin,, 0yeErE , 

где ye  - единичный вектор, направленный вдоль оси Оy. Найти закон изменения  t,rB . 

 

Решение. 

Воспользуемся одним из уравнений Максвелла: 
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В декартовых координатах действие оператора   (набла) векторно на вектор  t,rE  

записывается в виде: 
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т.к.  t,rE  имеет только одну ненулевую компоненту yE , которая зависит только от одной 

x координаты. 

В итоге: 
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В результате видно, что yE  и zB  изменяются в фазе, а связь между амплитудами имеет вид: 

cB
k

BE  000


, 

где 
k

c


  - скорость света в вакууме. 

Векторы  t,rE ,  t,rB  и k  ориентированы вдоль осей Oy, Oz и Ox соответственно, т.е. 

образуют правую тройку векторов. 

Замечание. Если волна распространяется в однородной изотропной среде с показателем 

преломления n , то амплитуды электрической и магнитной составляющих связаны 

соотношением: 

vBE  00 , 

где 
n

c
v   - скорость света в среде. 

Последнюю формулу можно записать в виде: 

0000 HE   . 

Из нее следует и равенство энергии электрической и магнитной составляющих в волне: 
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Рис. 1. Бегущая электромагнитная волна («мгновенная фотография»). 

 

2. Воздух ионизуется при напряженности электрического поля E30 кВ/см. Чему равна 

интенсивность волны? 

 

Решение. 

Интенсивность по определению: 

;HESI n   

Так как в бегущей волне 
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3. В вакууме навстречу друг другу распространяются две электромагнитные одинаково 

поляризованные волны, электрические составляющие которых изменяются по закону: 

     kxtEtzt  cos,, 011 yeErE , 

     kxtEtzt  cos,, 022 yeErE , 

где ye  - единичный вектор, направленный вдоль оси Оy. Найти закон изменения  t,rB . 

 

Решение. 

В соответствии с принципом суперпозиции 

         kxtEtztztz coscos2,,, 021  yeEEE , 

т.е. формируется стоячая волна. 

Аналогично зад.1 найти закон изменения магнитной составляющей (самостоятельно). 

Ответ.          kxt
c

Ekxt
k

Etz sinsin
1

2sinsin2, 00 


 zz eeB . 

Иллюстрации к поведению стоячей волны в разные моменты времени. 

Стоячая волна (t=0): maxyE ; 0zB . 
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Стоячая волна (t=T/8): 0yE ; 0zB . 
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Стоячая волна (t=T/4): 0yE ; maxzB . 
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Замечание. 

Вспомним следующие формулы: 

1. Связь амплитуд в электромагнитной волне: BcE  . 

2. Связь плотности энергии и плотности потока энергии: элмагнwc S


. 

Обращаем внимание, что справедливы они для одиночной бегущей электромагнитной 

волны. Если же в пространстве распространяются две (или более) волны, то данные 

соотношения могут нарушаться. В частности, в рассмотренной выше стоячей волне 

электрическая и магнитная составляющая изменяются не в фазе, и для расчета плотности 

энергии элмагнw  и плотности потока энергии  HES   необходимо использовать 

исходные формулы. 

В задаче 4.228 (Иродов, 1988) в вакууме две плоские волны распространяются во взаимно 

перпендикулярных направлениях, направления колебаний векторов 1E  и 2E  совпадают. Но 

направления колебаний векторов 1H  и 2H  будут взаимно ортогональны, поэтому для 

амплитуды электрической 21 EEE   и магнитной 21 HHH   составляющих волны 

уже не будет справедлива связь амплитуд в виде BcE  .  

 

Сферическая волна 

Для корректного нахождения уравнения сферической волны (на самом деле, не уравнения, а 

закона!) надо решать волновое уравнение в сферических координатах. Но есть способ проще. 

Так как фронт сферической волны – сфера, то легко сообразить общую форму закона: 

     krtrEtrE  cos, 0 , 

причем здесь k – не вектор, а волновое число. 

Рассмотрим тонкий сферический слой толщиной dr, расположенный на расстоянии r от 

точечного источника, и найдем энергию электрического поля dW в нем: 

      drrkrtrEdrrtrEdVwdW эл
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В процессе распространения данного сферического слоя со скоростью света его энергия не 

будет изменяться. Но не меняются также и толщина слоя dr, и фаза  krt  . 

Следовательно, 

  drrrEconstdW 22
0~  . 

Из этого следует, что амплитуда сферической волны обратно пропорциональна расстоянию 

от источника: 

 
r

A
rE 0

0 ~ . 

Уравнение (закон!) сферической волны приобретает вид: 

   krt
r

A
trE  cos, 0

, 

где амплитудой волны следует называть не 0A , а 
r

A0
. 

Иногда записывают  

   krt
r

E
trE  cos, 0

, 

что неверно из соображений размерности. 

 

Характеризуя точечный источник сферической волны, обычно указывают среднюю 

мощность P, излучаемую им. Получим из этого знания выражение для 0A . 

Так как интенсивность есть среднее значение энергии, проходящей в единицу времени через 

единичную площадку, то на расстоянии r от источника 

22 44 r
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В то же время связь между интенсивностью и объемной плотностью энергии: 

с
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В итоге получаем: 
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Домашнее задание  

4.219, 222, 227, 228, 230, 231 

 

Давление света. 

Как показано в Конспекте лекций, световой пучок с плотностью электромагнитной энергии 

элмагнw  и поперечным сечением  , попадая на полностью поглощающую пластинку, 

действует на нее с силой 

 элмагнпад wF  

независимо от ориентации пластинки. Направление действия силы совпадает с направлением 

падающего пучка. 

Если пластинка отражает, или рассеивает, или пропускает часть падающей на нее энергии, то 

необходимо рассчитать дополнительную силу, которая возникает вследствие подобных 

действий.  
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Если коэффициент отражения пластинки равен R, то 

плотность энергии в отраженном пучке будет равна 

элмагнwR  , а поперечное сечение пучка останется 

точно таким же  . В результате модуль силы, 

действующей на пластину за счет отражения, будет 

равен:  

 элмагнотр wRF , 

а направление действия силы отрF  будет 

противоположно направлению отраженного пучка. 

Угол между направлениями действия сил падF  и отрF  равен 2 , где   - угол между 

падающим пучком и нормалью к поверхности. 

Учитывая связь между площадью   пластинки и площадью   поперечного сечения пучка 

 cos , 

для нормальной и тангенциальной составляющих суммы сил, действующих на пластину, 

получим: 

     2cos1cos1coscos   элмагнэлмагнотрпадn wRwRFFF ; 

     cossin1sin1sinsin   элмагнэлмагнотрпад wRwRFFF . 

 

Задача. Найти силу давления света (плотность энергии элмагнw ) на зеркальный конус 

(коэффициент отражения R, радиус основания a, угол при основании ). 

 

Решение. 

Сила падF , создаваемая падающим пучком, равна  

элмагнэлмагнпад wawF  
2  

(такой результат соответствует любому полностью поглощающему объекту, поперечное 

сечение которого представляет собой окружность радиуса a). 

 

Выделим в падающем пучке произвольное 

малое поперечное сечение d . Отраженный 

пучок будет иметь такое же поперечное 

сечение
1
, и плотность энергии этого пучка 

будет равна элмагнRw . Угол падения равен 

пад , угол между падающим и 

отраженным лучом в два раза больше и равен 

2 , такой же угол между силами падF  и 

отрdF , действующими на конус со стороны падающего и отраженного пучков 

соответственно.  

Из симметрии задачи ясно, что суммарная сила за счет отраженного пучка отрF  должна 

быть направлена вдоль оси падающего пучка, т.е. необходимо взять проекцию силы отрdF  

                                                 
1
 Вообще говоря, площадка d  не будет плоской, и в отраженном пучке по мере удаления будут изменяться и 

размеры, и плотность энергии. Но мы выбираем площадку d  достаточно малой, чтобы можно было считать 

ее плоской. Кроме этого, мы смотрим на параметры отраженного пучка непосредственно вблизи площадки d ,  

 

 

 

 

Fпад 

Fотр 

 

 d 

d 

d 
x 

dFотр 

 

2 
Fпад 
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на ось х, в результате появится множитель 2cos . Таким образом, проекция силы на 

нужное направление, создаваемая пучком d  будет равна: 

 dRwdF элмагнxотр 2cos, . 

Т.к угол падения  одинаков для всех элементов конуса, то интегрирование по всем 

поперечным сечениям d  даст вновь полное сечение падающего пучка 
2a : 

2
, 2cos aRwF элмагнxотр  . 

В результате для силы давления получим: 

  2cos12
, RwaFFF элмагнxотрпаддав . 

Проверим результат соображениями «здравого смысла». Если R=1, а 0 , то получим 

плоское зеркало, а результат: 

  элмагндав waRF  220;1  (все верно!). 

 

Задача. Найти силу давления света (плотность энергии элмагнw ) на зеркальный шар 

(коэффициент отражения R, радиус a). 

 

Решение. 

Сила падF , создаваемая падающим пучком, равна  

элмагнэлмагнпад wawF  
2  

(такой результат соответствует любому полностью поглощающему объекту, поперечное 

сечение которого представляет собой окружность радиуса a). 

Найдем теперь силу отрdF , действующую на малый элемент d  поверхности шара за счет 

отраженной волны: 

 cos  dwRdwRdF элмагнэлмагнотр , 

где   - угол падения на данный элемент; площади поперечного сечения падающего и 

отраженного пучков одинаковы и равны  cos dd . 

Напомним, что элемент поверхности в 

сферических координатах равен 

 ddad  sin2
 

(угол  отсчитывается от горизонтальной оси). 

Нетрудно заметить, что вследствие симметрии 

задачи по углу   суммарная сила, 

возникающая за счет отражения, будет 

ориентирована вдоль направления падающего 

пучка (ось Ох). Так как угол между 

направлениями отраженного и падающего 

пучков равен 2 , то проекция отрdF  на ось Ох равна: 

    2coscossin2coscos 2 ddawRdwRdF элмагнэлмагнxотр

 







 dawRdawR элмагнэлмагн 
4

4sin
22cos

2

2sin
2 22

. 

(интегрирование по   дает 2 ). 

Т.к. угол   изменяется в пределах от 0 до 
2

 , и  

 d 

d 
d x 

dFотр 

 

0 

dFпад 
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0
4

4cos
4sin

2

0

2

0






 d , 

то суммарная сила за счет отраженного пучка всегда равна нулю, причем независимо от 

коэффициента отражения R. Следовательно, сила давления на зеркальный шар точно такая 

же, как на полностью поглощающий диск такого же радиуса. 

 

Задача. Точечный изотропный источник мощностью P находится в центре сферы радиуса r, 

внутренняя поверхность которой зеркальна (коэффициент отражения R). Половину сферы 

удаляют. Найти силу светового воздействия на оставшуюся полусферу. 

Решение. 

Прежде всего, найдем связь между мощностью Р источника и объемной плотностью энергии 

элмагнw . Интенсивность излучения есть средняя энергия, падающая в единицу времени на 

единичную (по площади) площадку. Интенсивность на расстоянии r от изотропного 

источника равна 
24 r

P
I


 , а плотность энергии: 

cr

P

c

I
wэлмагн 24

 , 

где с – скорость света. 

На произвольный малый элемент d сферической поверхности   ddrd sin2
 

излучение падает нормально и, следовательно, отражается в противоположном направлении. 

Для модуля силы dF в этом случае можно записать: 

    





 ddR
c

P
ddr

cr

P
dRwdF элмагн sin1

4
sin

4
1 2

2
 

(угол  отсчитывается от оси симметрии полусферы). 

Из симметрии следует, что  суммарная сила светового воздействия будет направлена по оси 

симметрии, поэтому следует взять соответствующую проекцию: 

  


 ddR
c

P
dFdFx cossin1

4
cos . 

Осталось проинтегрировать по  от 0 до 2 и по  от 0 до /2: 

     


 


 2

0

2

0

2

0

sinsin1
2

cossin1
4

dR
c

P
dR

c

P
dFx  

   R
c

P
R

c

P







1
42

sin
1

2

2

0

2

. 

 

Задача. (Иродов, 5.284) На оси круглой абсолютно зеркальной пластинки находится 

точечный изотропный источник, световая мощность которого P. Расстояние между 

источником и пластинкой в n раз больше ее радиуса. Найти силу светового давления на 

пластинку. 

Решение. 

Прежде всего, найдем связь между мощностью Р источника и объемной плотностью энергии 

элмагнw . Интенсивность излучения есть средняя энергия, падающая в единицу времени на 
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единичную (по площади) площадку. Интенсивность на расстоянии l от изотропного 

источника равна 
24 l

P
I


 , а плотность энергии: 

cl

P

c

I
wэлмагн 24

 , 

где с – скорость света. 

 

l 

max 

dFпад 

dF 

 

d 

 
Введем сферическую систему координат, угол  отсчитывается от оси симметрии системы. 

Так как расстояние между источником и пластинкой в n раз больше ее радиуса, то угол  

изменяется в пределах от нуля до 
n

arctg
1

max  . 

Рассмотрим пучок излучения с поперечным сечением  ddld sin2
 (это 

выражение для малого элемента площади в сферических координатах), где l -расстояние от 

источника до соответствующей точки площадки. Сила светового давления такого пучка по 

модулю равна  

 dwdF элмагнпад . 

С такой же силой будет действовать и отраженный пучок, сумма этих сил будет направлена 

параллельно оси симметрии и равна: 

  cos2cos2 dwdFdF элмагнпад  







 dd
c

P
ddl

cl

P
cossin

2
cossin

4
2 2

2
. 

Осталось проинтегрировать по углам: 

 12

1

2

sin
cossin2

2 2

max
2

0

max








 



nc

P

c

P
d

c

P
F . 

 

Домашнее задание  

5.280, 281, 283, 284. 

 

 

Приложение. 

Как запомнить систему уравнений Максвелла? (те, кто ее знает, могут не читать). 

 

Следует помнить, что: 

1)в систему входят 4 уравнения; 

2)в них входят 4 полевых вектора: 2 «электрических» ( E


 и D


) и 2 «магнитных» ( B


 и H


); 

3)в правой части стоят дифференциальные операторы div  и rot , действующие на 

«электрические» и «магнитные» векторы. 
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Итак, структура уравнений следующая: 

 

«электрические» ( E


 и D


) «магнитные» ( B


 и H


) 

?? div  ?? div  

?? rot  ?? rot  

Сначала правильно расставим векторы в левой части уравнений. Для этого разобьем 

div  и rot  на буквы и поищем эти буквы среди векторов. В div  входят буквы: «d», «i» и «v» 

(по-русски «в»), а в векторах есть D


 и B


(пишется как русская «В»). Именно на эти векторы 

и будет действовать оператор div . Оставшимся векторам остается подвергнуться действию 

rot . Кстати, разбив rot  по буквам, не найдем ни одного соответствия с векторами. 

В результате получим: 

«электрические» ( E


 и D


) «магнитные» ( B


 и H


) 

?D 


div  ?B 


div  

?E 


rot  ?H 


rot  

Теперь вспомним, что поля в некоторой степени «антиподы»: электрическое (точнее, 

электростатическое) потенциально – работа по замкнутому контуру равна нулю; магнитное 

вихревое – линии поля замкнуты. Работа связана с интегралом по контуру, т.е. с rot , 

замкнутость линий говорит о нулевом потоке через замкнутую поверхность, т.е. о div . 

Новый результат: 

«электрические» ( E


 и D


) «магнитные» ( B


 и H


) 

?D 


div  0B 


div  

?0E 


rot  ?H 


rot  

Теперь вспомним, что электрическое поле создается электрическими зарядами, а 

магнитное – токами. Но, т.к. уравнения дифференциальные, то следует говорить о плотности 

заряда  и тока j


. И подставить их в пока «не использованные» уравнения: 

 «электрические» ( E


 и D


) «магнитные» ( B


 и H


) 

D 


div  0B 


div  

?0E 


rot  ?jH 


rot  

Теперь вспомним, что переменное электрическое поле создает переменное магнитное и 

наоборот. Это приводит к появлению производных по времени 
t


, но в каких уравнениях? В 

тех, у которых в названии оператора есть буква «t», т.е.в уравнениях с rot . А действуют они 

все на те же «настырные» вектора D


 и B


, которые уже «влезли» под div , а теперь 

устремились к rot : 

«электрические» ( E


 и D


) «магнитные» ( B


 и H


) 

D 


div  0B 


div  

t

B
?E 








rot  
t

D
?jH 








rot  

Осталась «проблема знака» перед производными. Заметим, что в правой части 

уравнения для E 


rot  стоит одно слагаемое, а правой части уравнения для H 


rot  - два 

слагаемых. Поэтому и поставим перед производными одну и две черточки соответственно 

(они дадут знаки «минус» и «плюс»): 

 «электрические» ( E


 и D


) «магнитные» ( B


 и H


) 

D 


div  0B 


div  
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t

B
-E 








rot  
t

D
jH 









rot  

Система уравнений Максвелла получена (точнее, записана). Подчеркнем, что 

приведенное правило запоминания не есть доказательство правильности самих уравнений. 

Просто подсказка на «черный» день, неизбежно наступающий в день экзамена. 

 


